# 中華民國第61屆中小學科學展覽會作品說明書

科 別: 應用科學科(一)(機電與資訊)

組 別: 國小組

作品名稱:神奇的空氣琴

關 鍵 詞:超音波感應、頻率、音波

編號: A6013

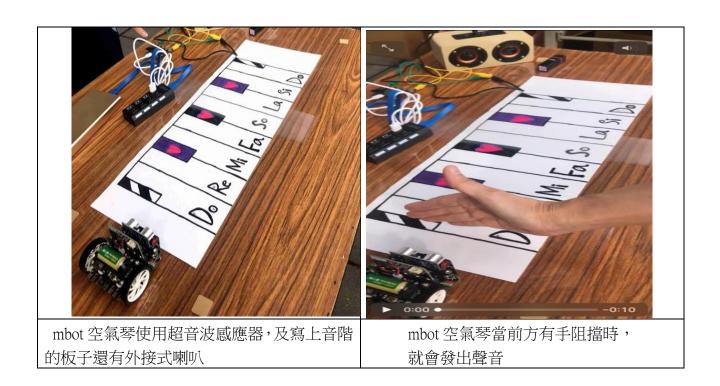
# 摘 要

為了解決隔壁鄰居小孩因手指受傷無法彈奏鋼琴的困擾,我們想利用樂高 EV3 來製作一台空氣琴,這台空氣琴不用按鍵,只要在空氣揮揮手,就會演奏出曲子。我們改良技藝博覽會中展示的 mbot 空氣琴的缺點,克服了各項困難,製造出的樂高空氣琴,具備能發出柔美的聲音、不需要音符刻度板、能達到兩個八度音而且攜帶方便的預期效果,這樣的動手做的成品讓我們覺得好有成就感。

# 壹、研究動機

有一天,隔壁鄰居的小孩手指受傷,醫生說短時間內好不了,所以不能彈鋼琴,可是他還是很想彈鋼琴,所以就問我們有沒有方法可以幫她,於是我們就想到一個方法,我們上網查有沒有可以不用手指就可以彈的鋼琴。後來,我們想到我們有一次去技藝博覽會看到有人用 mbot 做了一台空氣琴,可是功能不強,還存在許多的缺點。我們想應該可以利用學過的樂高 EV3 程式設計,製作一台比它更好的空氣琴,來解決隔壁小孩的難題。

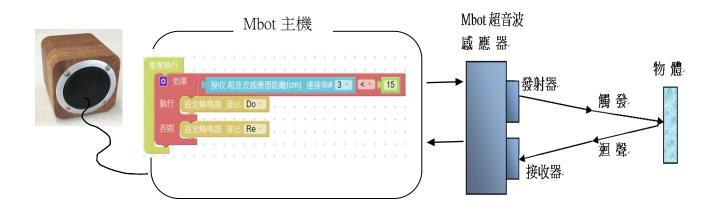
# 貳、研究目的


- 一、探討技藝博覽會 mbot 空氣琴的優缺點有哪些?
- 二、怎樣使用 lego ev3 製作空氣琴的演奏設備?
- 三、如何設計演奏 Do Re Mi 等音階的超音波感應程式?
- 四、解決超音波因感應不良而發出雜音的策略為何?
- 五、怎樣修改超音波琴的結構達成可調整、美觀、穩定擺放的要求?

# 參、研究設備及器材

| Lego-Ev3<br>主機          | EV3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lego-Ev3<br>超音波<br>感應器  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
| Lego-Ev3<br>結構積木<br>(一) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lego-Ev3<br>結構積木<br>(二) |  |
| 100x50cm<br>三合板         | Do   Co   A   Co   Co   Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 感應木板                    |  |
| 計時手機                    | TO SOME ON SOM | 感應木條                    |  |
| 各種防滑材料                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30、100cm<br>長尺          |  |

# 肆、研究過程及方法


在屏東縣 109年的中等學校技藝博覽會上,我們看到一所學校使用 mbot 做了一台空氣琴。 因為第一次遇到這種不用鍵盤就可演奏出聲音的神奇樂器,在好奇心的驅使之下,就在這攤 位逗留很久,觀察別人怎樣玩,也親自玩過幾次後發現,這種空氣琴雖然神奇好玩,但因設 計過於簡單而存在許多的問題。

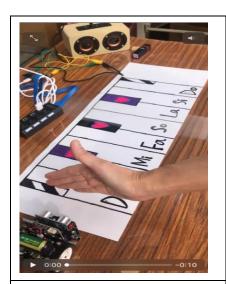


# 【研究一】 探討技藝博覽會 mbot 空氣琴的優缺點有哪些?

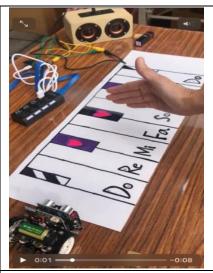
- 1.觀看 mbot 空氣琴的演奏影片,了解其操作的步驟及現象。
- 2.根據 mbot 空氣琴演奏所觀察到的現象,與彈奏鋼琴來進行比較。
- 3.將比較結果依照演奏難易度、靈敏度、音質等特性製成比較的表格。
- 4.依照研究 lego ev3 的經驗, 擬定將 mbot 空氣琴改成使用 lego ev3 來製作空氣琴後, 期望改進的效果。

# (一)根據我們在技藝博覽會現場的體驗經驗及再度觀看影片整理後發現,mbot 空氣琴的發 聲過程及原理如下

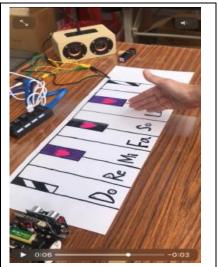



## (二)經過討論後,得到 mbot 空氣琴的優缺點如下

#### mbot 空氣琴的優點


- 1. 在底板上標出音階,比較容易演奏。
- 2. 琴鍵大而清楚,演奏不容易失誤。
- 3. 可以連喇叭,可控制聲音大小聲。
- 4. 固定 1 秒才發出一個聲音,不熟悉的生手容易演奏。

#### mbot 空氣琴的缺點


- 1. 超音波感應不良,演奏容易出錯。
- 2. 超音波反應太慢,容易感測錯誤。
- 3. 距離太遠感應比較不好。
- 4.音階太少,能彈奏的曲子很少。
- 5. 用木板輔助彈奏,顯得很無趣。



當 mbot 空氣琴感應到 Do 的 位置被阻擋時,會發出 Do 聲



mbot 空氣琴在底板上標出音階,比較容易演奏



mbot 空氣琴的超音波反應太慢,容易感測錯誤

# (三) 將 mbot 空氣琴改成使用 lego ev3 來製作空氣琴後,期望改進的效果

| 改進的項目     | Mbot 空氣琴       | 將建置的 lego ev3 空氣琴       |
|-----------|----------------|-------------------------|
| 演奏的靈敏度    | 隔一段時間有阻擋才發出一短音 | 有阻隔就發出聲音,直到阻隔消失         |
| 聲音的音質     | 刺耳的電子聲         | 比較能發出柔美的聲音              |
| 外型設計      | 用一片木板畫出刻度來演奏的話 | 桌上不擺刻度板,在空中阻擋時,就可       |
| グド空設計<br> | 很無趣            | 以彈奏歌曲,顯得很神奇             |
| 音域        | 只有七個音          | 能達到兩個八度音(從低音 So 到高音 Fa) |

# 研究討論:

1.從 mbot 空氣琴的各項優缺點做為建造新的空氣琴的基礎,期待能完成一台更理想的作品 2.我們希望透過樂高 ev3 的積木、超音波感應器等硬體及主機的程式設計,一項項的來完成超 音波空氣琴的建造工作。

# 【研究二】怎樣使用 lego ev3 製作空氣琴的演奏設備?

# 研究方法:

- 1.依據超音波空氣琴的要求,需要使用到主機(邏輯運算及發出聲音)與超音波感應器。
- 2.使用樂高積木組成一個形體結構,搭載主機及超音波感應器。
- 3.組成的結構能穩定的擺放在桌上,主機能容易操作,超音波感應器可以調整上下角度。

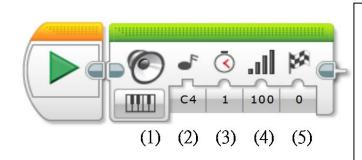
#### 研究結果:

使用樂高現有的基本車體,再將超音波感應器的位置調高,即可達到樂高空氣琴的基本需求。我們自製的樂高超音波感應車如下圖



## 研究討論:

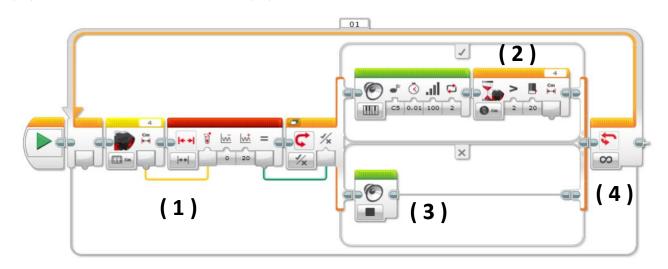
- 1.我們使用現有的樂高車,經過稍微改裝後即可立即進行實驗的工作。
- 2.有了硬體的結構後,接著需要著手研究如何使樂高 ev3 發出各種的音階。


# 【研究三】如何設計演奏 Do Re Mi 等音階的超音波感應程式?

### 研究方法:

- 1.開啟樂高 ev3 的程式,選取發出聲音的模組。
- 2.打開 ev3 主機後,與程式進行藍牙連接。
- 3.測試 ev3 的聲音的模組程式,使之與超音波感應器相對應,當感應器偵測到遠近不同距離 有物體時,會發出 Do Re Mi 等不同的聲音。

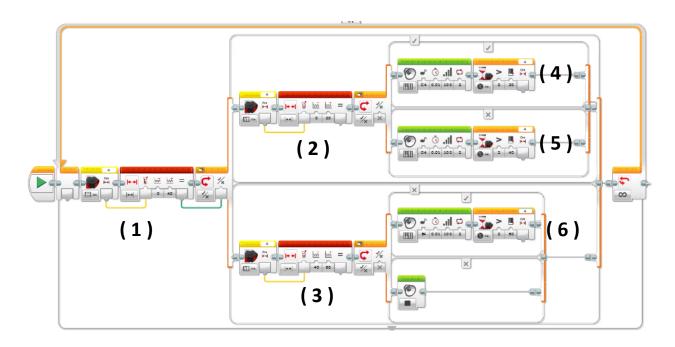
#### 研究結果:


### (一)未使用超音波感應器,演奏 Do (C4)連續一秒的程式設計如下



#### 【程式說明】

- (1) 聲音演奏的模式 (停止、頻率、音符)
- (2) 聲音的音高 (從 C4 到 B6)
- (3) 聲音的長度(以秒為單位)
- (4) 聲音的音量(從1到100)
- (5) 聲音的類型 (連續、間斷)

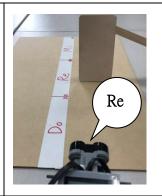

#### (二) 使用超音波感應器,演奏 Do (C4)連續聲音的程式設計如下



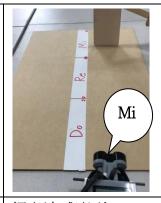
### 【程式說明】

- (1) 超音波感應到 0~20cm 内有物體 (v 為符合,程式往上進行; x 為不符合,往下進行)。
- (2) 喇叭連續發出 Do (C4)的聲音,直到超音波感應 20cm 內沒有物體為止。
- (3) 當超音波感應到 0~20cm 內有物體為 不符合 (x) 時,喇叭停止發出聲音。
- (4) 程式以無限迴圈(∞)重複進行。

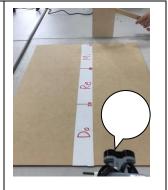
### (三) 使用超音波感應器,演奏 Do (C4)、Re(D4)、Mi(E4) 連續聲音的程式設計如下




#### 【程式說明】

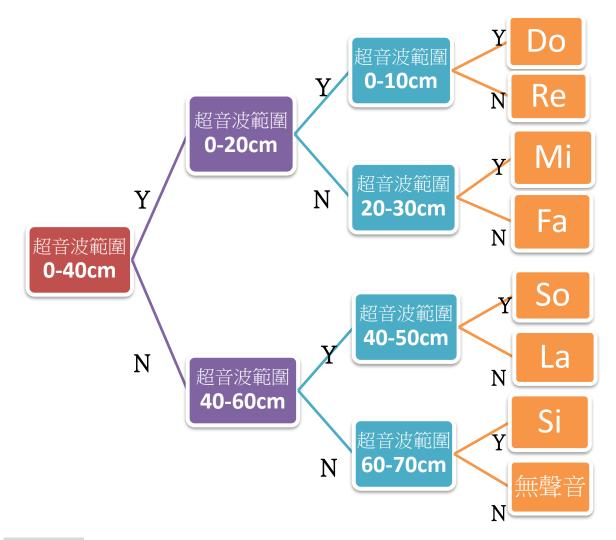

- (1) 超音波鳳應到 0~40cm 內有物體 (v 為符合,程式往上進行; x 為不符合,往下進行)。
- (2) 超音波感應到 0~20cm 內有物體 (v 為符合,程式往上進行; x 為不符合,往下進行)。
- (3) 超音波 鳳鷹到 40~60cm 內有物體 (v 為符合,程式往上進行; x 為不符合,往下進行)
- (4) 喇叭連續發出 Do (C4) 的聲音,直到超音波感應 20cm 內沒有物體為止。
- (5) 喇叭連續發出 Re(D4) 的聲音,直到超音波 鳳應 40cm 內沒有物體為止。
- (6) 喇叭連續發出 Mi(E4) 的聲音,直到超音波感應 60cm 內沒有物體為止。




超音波感應到 0~20cm 內有物體, 發出 Do 的聲音



超音波感應到 20~40cm內有物體, 發出 Re 的聲音

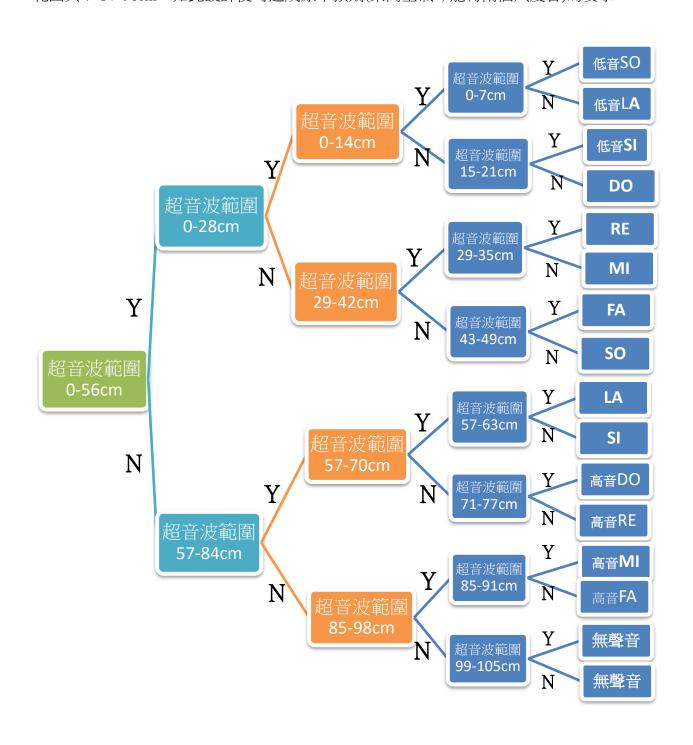



超音波感應到 40~60cm 內有物體, 發出 Mi 的聲音



超音波感應到 60cm 以外或感應不到物體 時,就不會發出聲音

# (四) 利用超音波感應器,演奏 Do (C4)到 Si(B4) 七個連續聲音的程式設計簡要流程如下




#### 研究討論:

1.在演奏的過程中,我們也常發現一個音符要結束時會短暫的變成高一度的音符,初步判斷 可能跟超音波感應到的距離有關。 2.當我們將超音波空氣琴的程式設計從三個音階變成七個音階後,在進行演奏時發現,常常 會出現音符錯誤的現象,不知是否和每個音符所對應的超音波感應的長度變短有關?

### (五) 利用超音波感應器,演奏低音 So 到高音 Fa 兩個八度音的程式設計簡要流程如下

因感應的範圍過長,會增加演奏的困難,所以設定每個音感應範圍是 7cm,全部可感應 範圍共 7\*14=98cm,如此設計便可達成原本預期(樂高空氣琴能有兩個八度音)的要求。



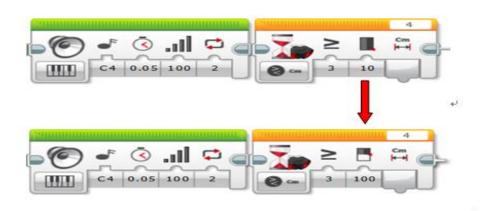
# 【研究四】解決超音波因感應不良而發出雜音的策略為何?

在演奏的過程中,我們常發現一個音符要結束時會短暫的變成高一度的音符,初步判斷 可能跟超音波感應到的距離有關,我們進行以下的研究設計來解決此一問題。

# (問題一):如何改善音階結束時,偶而會短暫變成高一度聲音的現象?

# 研究方法:

- 1.當演奏音樂時,將樂高主機和筆電進行藍牙連接,以方便監看超音波的鳳鷹距離。
- 2.每次只進行單音的演奏,在該音的感應範圍內前後測試,直到出現變音時固定木板的位置。
- 3.當出現變音時,紀錄當時的超音波感應距離,再與發出該音的在程式中的應有感應範圍進 行比較。


## 研究結果: (單位:cm)

| 音   | 追           | Do    | Re    | Mi    | Fa    | So    | La    | Si    |
|-----|-------------|-------|-------|-------|-------|-------|-------|-------|
| 感應筆 | 範圍(cm)      | 0~10  | 10~20 | 20~30 | 30~40 | 40~50 | 50~60 | 60~70 |
| 變聲時 | 1次          | 10.6  | 20.5  | 32.4  | 42.3  | 52.6  | 62.1  | 71.5  |
| 超音波 | 2 次         | 10.7  | 22.2  | 31.2  | 42.7  | 50.4  | 61.2  | 72.3  |
| 的感應 | 3 次         | 11.2  | 21.5  | 30.5  | 41.3  | 52.7  | 62.4  | 73.9  |
| 距離  | 4 次         | 10.3  | 20.4  | 31.9  | 40.4  | 51.0  | 63.7  | 71.0  |
|     | 5 次         | 11.1  | 21.8  | 30.8  | 41.5  | 52.7  | 60.8  | 72.8  |
|     | 平均          | 10.78 | 11.28 | 31.36 | 41.64 | 51.88 | 62.04 | 72.3  |
|     | 比最遠<br>距離增加 | 0.78  | 1.28  | 1.36  | 1.64  | 1.88  | 2.04  | 2.3   |

#### 研究討論:

1.從操作中發現 Do 到 Si 每個音階結束時,偶而會短暫變成高一度聲音,都是發生在超音波 能感應到該音階最後的位置(如 Do 是約在 8、9cm 接近 10cm),所偵測到的超音波距離都是 比其最遠距離多出 0.1~3.9cm 內。

- 2.從 Do 到 Si 當發出變音時,所測量出的超音波距離比其能感應的最遠距離會逐漸增加(0.78→2.3cm)。
- 3.經此研究發現,音階結束時偶而會短暫變成高一度聲音的現象,是因量測的超音波增加, 所以,我們進行以下樂高程式的修正:



將發出該音符的超音波結束的範圍(例如 Do 是在 10cm),均修改成 100cm,當感應木板離開 偵測範圍前,都會發出該音符,當拿起來後,就會因感應距離超過 100cm 而停止聲音。

4.在進行演奏 Do、Re、Mi 的實驗時,我們發現超音波偵測到阻擋物的範圍並不是水平線,而是距離超音波越近,可感應的位置越低;距離超音波越遠,可感應的位置越高。經查閱書籍與網路資料後得知,理論上超音波感應器可偵測的範圍應該是類似圓錐體,距離超音波感應器越近,可感應的截面積應該接近面積較小的圓形;距離超音波感應器越遠,可感應的截面積應該接近面積越大的圓形。實際的情形真是如此嗎?



# (問題二):如何探測樂高 ev3 超音波的感應範圍?

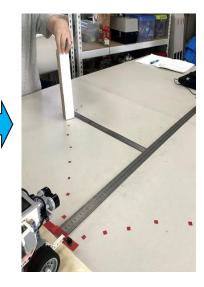
測試 1 : 樂高 ev3 超音波的左右感應範圍為何?

- 1.在超音波前面放一枝 100 公分的量尺。
- 2.設計超音波程式在90公分內,只要有偵測到物體就會發出嗶聲。
- 3.在桌上的直尺上,每隔五公分垂直向左右延伸測量,直到偵測不到物體時在桌上黏貼膠帶。
- 4.將左右全部的膠帶前後連接成一條線,測出它的角度。



(1) 在超音波前面放上量尺

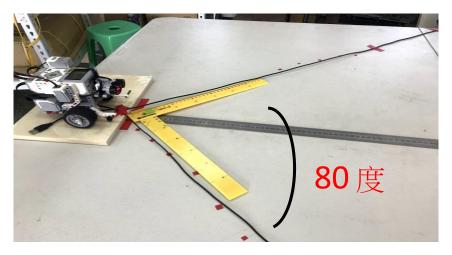



(2) 偵測到前方有物體就會發出嗶聲



(3) 隔 5cm 向左右延伸測量,直到偵測不到物體



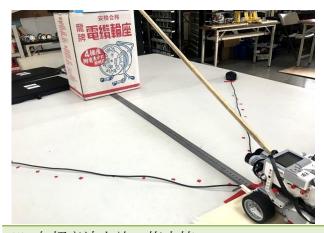

(4) 偵測不到物體時, 在桌上黏貼膠帶



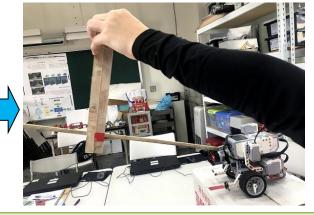
(5) 重複進行,直到正前 方 50cm 為止



(6) 將左右全部的膠帶 前後連接成一條線




- 1.樂高 ev3 超音波感應器左右兩邊能感應到物體角度各是 40 度,兩邊的夾角合計約為 80 度。
- 2.發現在測量時物體與超音波發射的夾角約成直角時,最容易感應得到。


### 測試 2: 樂高 ev3 超音波感應器的上方感應範圍為何?

因為在演奏時是從上往下阻擋超音波,所以我們只探究到底樂高超音波往擴散的範圍,超音波的下方一般都是擺放的桌子,因桌面與超音波發射的角度很小,回音無法反射再回到接收器上,所以就不需要進行探究。

- 1. 測量超音波在上面的範圍時,在超音波上放一條木棒。
- 2. 在每隔一段距離使用木板測量,當聽到有聲音時就將木棒的高度調高。
- 3. 直到沒有聲音為止,最後測量木棒與水平線的夾角就是樂高超音波的上緣偵測範圍。



(1) 在超音波上放一條木棒



(2) 偵測到前方有物體就將木棒的高度調高,直到沒有聲音為止

- 1.樂高 ev3 超音波感應器上緣能感應到物體的角度約為 35 度。
- 2.在操作時發現,離超音波越近,偵測的穩定度較好,距離越遠,偵測較為不穩定,木板需 要轉至特定的夾角,才會發出聲音。

# 研究討論:

經實驗發現樂高 ev3 的超音波感應器的左右擴散的角度約為 40 度,而向上擴散的角度約 為35度,因此如將樂高空氣琴平放的話,就會產生離超音波越遠的感應位置會變得越高,造 成演奏上的不方便。

### (問題三):如何調整超音波的角度才能更容易進行演奏?

- 1 水平架設出超音波在最上面偵測的木條。
- 2 將超音波後端底下放上木板,使超音波角度向下傾斜。
- 3 每次墊高一片木板,再次確認水平木條下能否偵測到物品。
- 4 直到水平木條下不能偵測到物品為止。
- 5.測試調整後的空氣琴,記錄演奏的效果。



水平架設出超音波最 上面偵測的木條



測試水平木條下能否 偵測到物品



將超音波後端底下放 上木板,使其角度向 偵測到物品為止 下傾斜

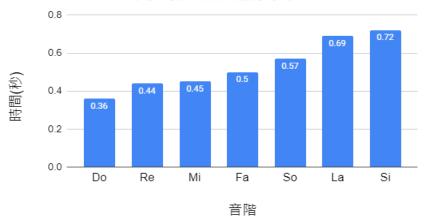


直到水平木條下不能

- 1 當超音波後端底下放上木板調整後,使上方偵測範圍變成水平,演奏比較方便。
- 2 演奏比較不會斷斷續續、出現其他雜音的現象。
- 3 當演奏時,手要迅速就定位停留一段時間不動,再迅速拿起,就會達到比較好的效果。

#### (問題四):距離超音波越遠的音階是否反應就會越慢呢?

我們察覺,在演奏時前面的音階的反應速度比較快的現象,越到後面的應節反應比較慢,而且容易出現雜音,為了驗證我們的察覺是否正確,所以進行以下的實驗。


#### 研究方法:

- 1.使用每個音在超音波感應範圍各相差 15cm 的程式設計,當用感應板測出每個音調發出聲音的最快頻率之後,計時 10 秒,計算時間內可發出聲音的次數。
- 2.每個音調測量8次,統計之後,找出平均發出每個音所需最快時間及各音間的變化。

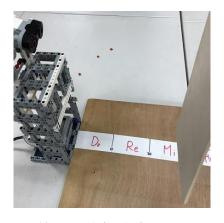
#### 研究結果: (單位:次)

|    | 第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 | 第八次 | 平均   | 秒/音    |
|----|-----|-----|-----|-----|-----|-----|-----|-----|------|--------|
| Do | 24  | 23  | 28  | 27  | 30  | 30  | 28  | 30  | 27.5 | 0.36 秒 |
| Re | 20  | 21  | 22  | 25  | 23  | 24  | 23  | 24  | 22.8 | 0.44 秒 |
| Mi | 22  | 24  | 20  | 18  | 24  | 23  | 22  | 24  | 22.1 | 0.45 秒 |
| Fa | 19  | 21  | 19  | 20  | 21  | 20  | 21  | 19  | 20.0 | 0.50 秒 |
| So | 15  | 14  | 17  | 17  | 21  | 21  | 17  | 18  | 17.5 | 0.57 秒 |
| La | 16  | 15  | 14  | 15  | 13  | 14  | 15  | 14  | 14.5 | 0.69 秒 |
| Si | 14  | 13  | 13  | 14  | 14  | 15  | 14  | 14  | 13.9 | 0.72 秒 |





#### 研究討論:


- 1.距離超音波越近的音階反應越快,距離超音波越遠的音階反應越慢,第一個音(Do)只需 0.36 秒,而最後一個音(Si)需要 0.72 秒,相差快一倍。
- 2. 距離超音波越近的音階發出的音越準確,距離超音波越遠的音階則越容易出現雜音。

# (問題五):超音波感應音符所需的距離會影響演奏的方便性與成功機率嗎?

我們在操作時發現,距離超音波越近的音階發出的音越準確,反應的速度越快,距離越遠的音階則相反,那麼超音波感應音符所需的距離,會影響演奏的方便性與成功機率嗎?

## 研究方法:

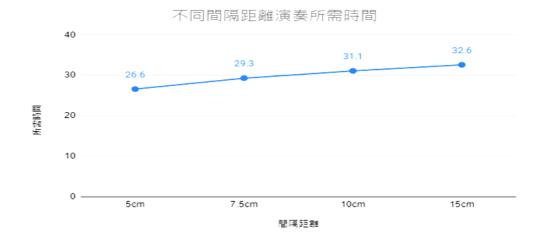
- 1.使用樂高 ev3 的設計可演奏 Do~Si 共七個音的程式。
- 2.將超音波感應音符所需的距離分別設定為 5cm、7.5cm、10cm、15cm 共四種模式。
- 3.製作音階刻度板,刻度分別為 5cm、7.5cm、10cm、15cm 共四種,演奏時放置在空氣琴前面。
- 4.每次演奏(小星星)樂曲時,紀錄所需的時間及發生錯誤音符的次數,各 15 次後統計其平均數,討論四種模式的優缺點。



(1) 使用感應板演奏(小星星)歌曲



(2) 参考用的刻度板,刻度分 別為 5cm 及 7.5cm

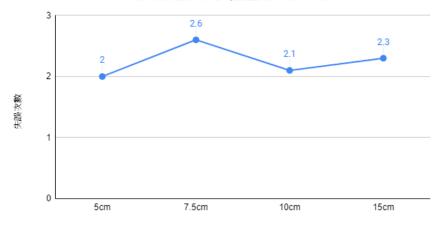



(3) 參考用的刻度板,刻度 分別為 10cm 及 15cm

# 研究結果:

(1)不同間隔距離演奏一首(小星星) 所需時間實驗紀錄及統計表如下 (單位:秒)

| 秒次數距離 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 平均   |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|------|
| 5cm   | 31 | 24 | 25 | 23 | 23 | 28 | 28 | 28 | 26 | 25 | 29 | 31 | 31 | 23 | 24 | 26.6 |
| 7.5cm | 32 | 28 | 34 | 25 | 25 | 32 | 32 | 24 | 26 | 27 | 33 | 30 | 28 | 29 | 35 | 29.3 |
| 10cm  | 38 | 31 | 28 | 27 | 27 | 32 | 25 | 26 | 33 | 29 | 39 | 32 | 35 | 33 | 32 | 31.1 |
| 15cm  | 32 | 36 | 34 | 28 | 32 | 32 | 32 | 30 | 35 | 34 | 33 | 30 | 32 | 34 | 35 | 32.6 |




(2)不同間隔距離演奏一首(小星星) 所產生的錯誤次數實驗紀錄及統計表如下

(單位:次)

| 失<br>決數<br>誤<br>距離 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 平均  |
|--------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|-----|
| 5cm                | 2 | 1 | 3 | 3 | 2 | 0 | 1 | 1 | 3 | 1  | 2  | 3  | 4  | 2  | 2  | 2.0 |
| 7.5cm              | 2 | 4 | 3 | 2 | 1 | 4 | 3 | 2 | 3 | 1  | 4  | 2  | 3  | 3  | 2  | 2.6 |
| 10cm               | 2 | 4 | 1 | 1 | 3 | 2 | 0 | 0 | 4 | 1  | 3  | 1  | 4  | 3  | 2  | 2.1 |
| 15cm               | 0 | 3 | 4 | 3 | 2 | 3 | 2 | 3 | 2 | 2  | 4  | 1  | 3  | 2  | 1  | 2.3 |

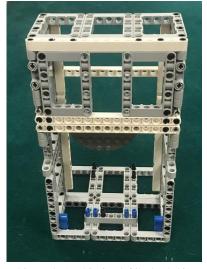
不同間隔距離演奏產生的失誤次數



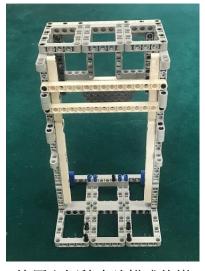
# 研究討論:

- 1.受試者在自然無提醒時間的情況下演奏(小星星)曲子,由統計資料發現,在不同間隔距離的音階中,間隔距離越小所需的時間越少,間隔距離越大所需的時間越多。
- 2.我們發現在不同間隔距離的設計下,演奏一首(小星星)時產生失誤的平均機率都在 2 次~2.6 次之間,並沒有隨距離增加而逐漸增加或減少的現象。

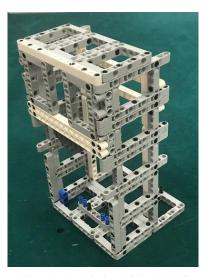
# 【研究五】怎樣修改超音波琴的結構達成可調整、美觀、穩定擺放的要求?


原本實驗的超音波空氣琴因調整角度時,需要使用木板墊高,也無法配合不同身高的使 用者,造成移動及演奏的困難,因此需要重新設計一台更符合需求的樂高超音波空氣琴,才 能達成神奇美妙的演奏效果。

# (問題一) 如何使用樂高的方形積木建構出空氣琴的骨架結構?


### 研究方法:

- 1.使用樂高的方框積木來進行骨架結構設計。
- 2.因演奏的需求, 骨架結構高度約需 25cm。
- 3.底部需可放上主機,頂部設計成可安裝超音波感應器。


#### 研究結果:



1.使用方框積木建構成的樂 2.使用方框積木建構成的樂 高空氣琴骨架(正面)



高空氣琴骨架(背面)



3.使用方框積木建構成的樂 高空氣琴骨架(側面)

# (問題二) 如何利用減速齒輪的設計,達成方便調整超音波角度的要求?

- 1.使用樂高的減速齒輪進行可調整超音波角度設計。
- 2.因調整的需求,每次調整的角度不可過大,需使用兩次的減速齒輪設計。
- 3.因美觀要求,在設計時儘量能左右對稱。



1.超音波上方偵測範 圍,呈角錐狀放射

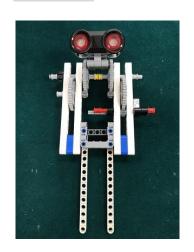


2.使用减速齒輪的設 計,每次能調整3.6度 呈水平狀設置



3.超音波感應器原來

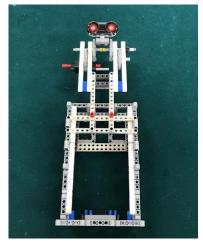



4.經減速齒輪的設 計,可隨意調整角度

# (問題三) 如何建構經由長形積木的結構設計,使超音波的位置可上下移動?

# 研究方法:

- 1.使用樂高的長形積木進行可調整超音波高度的設計。
- 2. 為了能方便上下移動,應使用紅色三格插銷來固定的設計。
- 3.應兼顧可上下移動及穩定的需求,調整的距離不需過長。

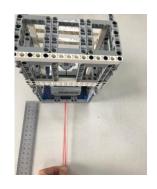

# 研究結果:



1.利用長條積木建構的超音 波感應器套件



2.使用長條積木建構成可調 整超音波高度的設計




3.超音波感應器調高 6.4cm 後 的情形

# (問題四) 嘗試如何使用各項材質,找出空氣琴的最佳防滑底墊?

# 研究方法:

- 1.在超音波空氣琴的底部黏上相同大小的各式防滑材質。
- 2.於底部最前端綁上一條橡皮筋。
- 3.將超音波空氣琴放置在長桌上,慢慢拉動橡皮筋直到空氣琴移動為止。
- 4.記錄空氣琴移動時橡皮筋的拉長長度,進行分析比較。



慢慢拉動橡皮筋



底部是(樂高積木)



底部黏上(泡泡紙)



底部黏上(提袋布)



底部黏上(止滑墊)



底部黏上(滑鼠墊)



底部黏上(影印紙)



底部黏上(果凍膠墊)

# 研究結果:

(單位:cm)

| 伸長量次數材質 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 平均  |
|---------|-----|-----|-----|-----|-----|-----|
| 樂高積木    | 2   | 1   | 2   | 1   | 1   | 1.4 |

| 泡泡紙  | 4      | 4      | 5      | 4      | 5      | 4.4  |
|------|--------|--------|--------|--------|--------|------|
| 提袋布  | 3      | 2      | 4      | 4      | 3      | 3.2  |
| 止滑墊  | 15     | 14     | 16     | 14     | 15     | 14.8 |
| 滑鼠墊  | 9      | 10     | 9      | 10     | 10     | 9.6  |
| 影印紙  | 2      | 3      | 2      | 3      | 3      | 2.6  |
|      | 伸長到    | 伸長到    | 伸長到    | 伸長到    | 伸長到    | 伸長超過 |
| 果凍膠墊 | 25cm 後 | 25cm |
|      | 還拉不動   | 還拉不動   | 還拉不動   | 還拉不動   | 還拉不動   |      |

#### 研究討論:

- 1.在未黏上任何防滑物體前的防滑效果最差,橡皮筋只伸長 1.4cm 就可拉動。
- 2.經各五次的實驗發現,底部黏上各項材質後,其防滑效果由高至低依序為,果凍膠墊>止 滑墊>滑鼠墊>泡泡紙>提袋布>影印紙。
- 3.經實驗發現果凍膠墊的防滑效果最佳,但是因果凍膠墊放置後不易移動,而且容易黏上汙垢,清除不便,所以最後選擇防滑效果亦佳,不易沾黏汙垢的止滑墊,作為超音波空氣琴的底墊材料。

# 伍、研究結論

- 一、mbot 空氣琴的優點為在底板上標出音階、比較容易演奏、琴鍵大而清楚,演奏不容易失誤、可以連喇叭,可控制聲音大小聲。
- 二、mbot 空氣琴的缺點則有超音波感應不良,演奏容易出錯、超音波反應太慢,容易感測錯誤、音階太少,能彈奏的曲子很少、用木板輔助彈奏,顯得很無趣。
- 三、使用樂高現有的基本車體,再將超音波感應器的位置調高,可達到樂高空氣琴的基本需求,超音波感應器在最前端,高度方便感應;主機在最上面,容易操作;橡膠輪摩擦力大,不會滑動。
- 四、使 ev3 超音波空氣琴可演奏基本 Do Re Mi 等不同的音階方法為,先將主機與程式進行藍

- 牙連接,建構 ev3 的聲音的模組程式,使之與超音波感應器相對應,當感應器偵測到近中遠不同距離有物體時,可發出 Do Re Mi 等不同的聲音。
- 五、利用樂高超音波,設計演奏低音 So 到高音 Fa 兩個八度音的程式,因感應的範圍過長時, 會增加演奏的困難,所以設定每個音感應範圍是 7cm,全部感應範圍為 98cm,適合放置 在一般的桌上進行演奏。。
- 六、當超音波後端底下放上木板調整後,使上方偵測範圍變成水平,演奏比較方便。
- 七、演奏時,前面的音階效果比較好,後面的音階比較容易出現雜音或感應不良。
- 八、在演奏時,手要迅速就定位停留一段時間不動,再迅速拿起,就會達到比較好的效果。
- 九、受試者在演奏(小星星)曲子時,在不同間隔距離的音階設計下,間隔距離越小所需的時間越少,間隔距離越大所需的時間越多。而在不同間隔距離的設計中,演奏(小星星)時產生失誤的平均機率都在2次~2.6次之間,並沒有隨距離增加而逐漸增加或減少的現象。
- 十、設計樂高超音波空氣琴時,可利用減速齒輪的特性,達成方便調整超音波角度的要求; 經由長形積木的結構設計,使超音波的位置可上下移動;在樂高空氣琴的底部可黏上止 滑墊,可達到較佳的防滑與固定效果。

# 陸、參考資料

- 一、創意樂高機器人--使用樂高徒控程式,李春雄.李碩安.林暐詒著。
- THE LEGO MINDSTORM NXT ZOO an unofficial kid-friendly guide
- 三、超音波原理介紹 https://webbuilder.asiannet.com/ftp/460/index-09105.htm。
- 四、超音波原理 maker.tn.edu.tw/modules/tad book3/page.php?tbdsn=201。
- 五、什麼是超音波感應器 <a href="https://fliprobot.gitbook.io/knowledge-base/sensory-system-of-fliprobot-sensor-modules/ultrasonic-sensor">https://fliprobot.gitbook.io/knowledge-base/sensory-system-of-fliprobot-sensor-modules/ultrasonic-sensor</a>。