屏東縣第 63 屆中小學科學展覽會 作品說明書

科別:物理科

組別:國中組

作品名稱: 焦耳小偷-自製電感升壓研究

關 鍵 詞:焦耳小偷、升壓器、電壓

編號:B2002

摘要

本實驗在研究名為"焦耳小偷"的升壓電路中,不同電感對於輸出電壓造成的影響。根據本實驗數據可得出以下結果。1. 輸入電壓低於 0.3V 時,無法透過該電路進行升壓。2. 建議選用 10mm 的鐵芯可以得到最好的升壓效果。3. 匝數纏繞越多,升壓效果越明顯。4. 依照輸出電壓的需求,可依照實驗數據自行搭配鐵芯和纏繞匝數找到最佳組合。

壹、前言

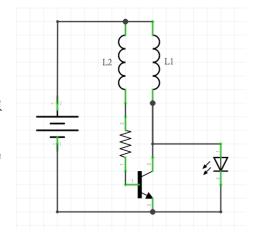
一、研究動機

現代生活中,電池為我們帶來許多的便利。但是有些一次電池明明內部還有電,但是卻因為電壓的衰退而無法繼續供電而需要淘汰。我們在偶然的機會看到網路上有一種電路,名字叫做"焦耳小偷",號稱可以榨乾電池內部所有的電力。這點引起了我們了興趣,所以我們開始了對"焦耳小偷"的研究。

二、研究目的

- (一) 了解焦耳小偷的工作原理。
- (二) 改變自製電感匝數後,找出匝數和輸出電壓的關係。
- (三) 改變自製電感的鐵芯直徑後,找出直徑和輸出電壓的關係。

三、文獻回顧

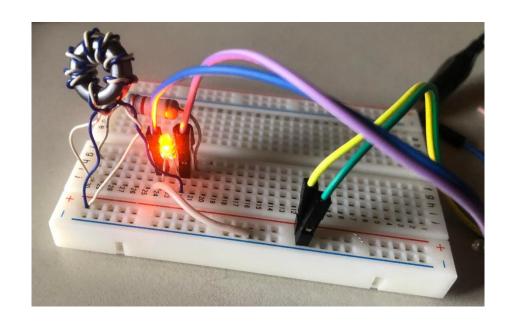

(一) 電感

為一種電路元件,以導線繞磁性材料製成,有濾波、放大電壓等功能。根據電磁感應定律,磁場會對載流導線內部電流產生「反抗」現象。若自身產生的磁場造成磁通量變化導致電磁感應,稱為「自感應現象」,若外部磁場造成磁通量變化導致電磁感應,稱為「互感應現象」。另外電感器也有儲能作用,將電能轉換成磁能儲存,儲存的能量和儲能後釋放出的電壓正比於電感量。

(二) 焦耳小偷電路

為一種自震盪變壓電路,電路中利用兩個電感器放大電壓後輸出,是一種 極簡易的升壓器,運作流程如下:

- (1) 電路導通後電流瞬間經過 L1 導致自 感現象發生,此時 L1 形成上正下負 的電動勢。
- (2) L1 與 L2 產生互感現象, L2 產生上負下正的感應電動勢,和電池電壓串聯相互疊加,電流流到電晶體基極(B)增大,則從集極(C)流到射極(E)的電流也因此增大。

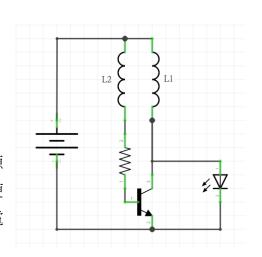

- (3) 由於從集極(C)流到射極(E)的電流增 大,則流過 L1 電流增加, L2 產生的互感電動勢也增大。
- (4) 重複上述流程直到電流大到進入電晶體截止區(飽和導通),則 L1 電流 瞬間減小,產生上負下正感應電動勢。
- (5) L2 也因此產生上正下負互感電動勢,使的流入基極(B)電流快速減小。
- (6) 此時電池電壓串聯 L1 感應上負下正感應電動勢,流入 R2 直到 L1 所儲存磁能用完,則再進入下一個周期。

貳、實驗器材與裝置

一、實驗器材

品名	規格及用途	數量
麵包板	規格:85*55mm	1
多 <u>超</u> 已	用途:連接電路,修改方便	1
氧化鐵芯	規格:直徑 6mm、10mm、12mm、18mm	4
事(TL)致/心	用途:製作電感器	4
電品體	規格:NPN C1815	1
电相阻	用途:電路需求	1
示波器	規格:GOS-622G	1
小汉码	用途:觀察電感器輸出電壓、波形	1
直流電源供應器	規格:GWINSTEK-GPC-3060D	1
且川电///	用途:提供穩定電壓源	1
電阻	規格:22Ω	1
年)灯.	用途:電路需求	1

二、實驗裝置


參、實驗流程

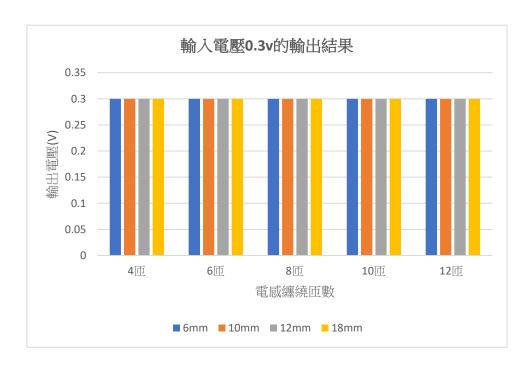
一、製作電感器

取兩條絕緣導線,並排後纏繞氧化鐵芯,可得電路圖中電感器的 L1、L2 並聯部分。

二、接出焦耳小偷電路

右圖為焦耳小偷電路示意圖,其中輸入電源 的我們是採用直流電供應器,這樣可以方便 我們隨時調整輸入的電壓,而且電壓相較電 池比較穩定。

三、測試不同輸入電壓流經電路後的結果

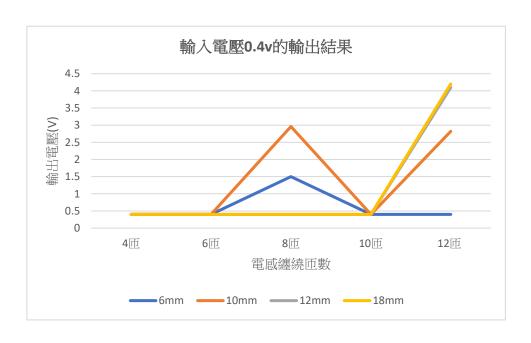

調整直流電供應器提供電路穩定電壓源 $(0.3V \cdot 0.4V \cdot 0.5V \cdot 0.V6 \cdot 0.9V)$,利用示波器觀察 22Ω 電阻端的輸出電壓、波形,並記錄下數據。

- 四、更換不同匝數的自製電感,重複上面步驟一到步驟三。
- 五、更換不同直徑的自製電感,重複上面步驟一到步驟三。

肆、研究結果

一、輸入電壓為 0.3v,不同直徑、匝數的自製電感,輸出電壓結果如下:

匝數 直徑	4 匝	6 匝	8 匝	10 匝	12 匝
6mm	0.3v	0.3v	0.3v	0.3v	0.3v
10mm	0.3v	0.3v	0.3v	0.3v	0.3v
12mm	0.3v	0.3v	0.3v	0.3v	0.3v
18mm	0.3v	0.3v	0.3v	0.3v	0.3v

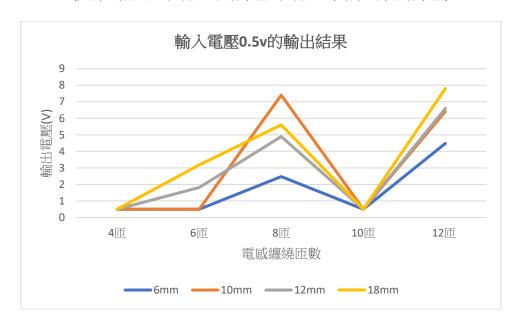

從數據可以看出,輸出電壓和輸入電壓相比完全沒有改變,和匝數及線圈 直徑都沒有關係,也就是說 0.3V 已經低於焦耳小偷電路的作用範圍。所以當電 池的電壓低於 0.3V 時,可視為無法再利用該電路增壓。

而因為電壓並沒有任何變化,如果採用折線圖會形成全部疊在一起的水平線,所以我們這個數據轉換出來的圖形是採用長條圖表示。

二、輸入電壓為 0.4v,不同直徑、匝數的自製電感,輸出電壓結果如下:

匝數 直徑	4 匝	6 匝	8 匝	10 匝	12 匝
6mm	0.4v	0.4v	1.5v	0.4v	0.4v
10mm	0.4v	0.4v	2.96v	0.4v	2.82v
12mm	0.4v	0.4v	0.4v	0.4v	4.1v
18mm	0.4v	0.4v	0.4v	0.4v	4.4v

(圖中有底色的部分為有升壓的部分,其餘為沒有升壓)

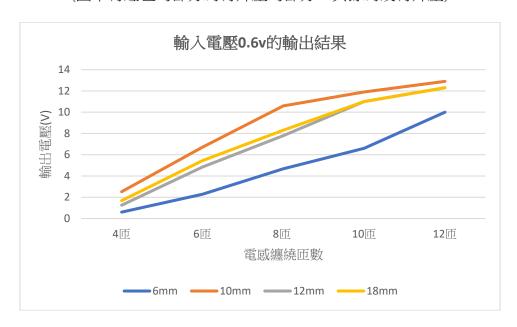

輸入電壓增加為 0.4V 時,可以從數據中看出 4 匝、6 匝及 10 匝完全沒有升壓。而 8 匝時是 6mm 與 10mm 的鐵芯才能升壓;纏繞圈數為 12 匝時,則是 10mm、12mm 與 18mm 三種直徑的鐵芯才能造成升壓。

這表示如果要對 0.4V 的輸入電壓升壓是有機會的,但是需要考慮鐵芯直徑 和纏繞匝數的搭配才辦得到。

三、輸入電壓為 0.5v, 不同直徑、匝數的自製電感, 輸出電壓結果如下:

直徑	4 匝	6 匝	8 匝	10 匝	12 匝
6mm	0.5v	0.5v	2.47v	0.5v	4.48v
10mm	0.5v	0.5v	7.4v	0.5v	6.41v
12mm	0.5v	1.82	4.89v	0.5v	6.6v
18mm	0.5v	3.18v	5.6v	0.5v	7.8v

(圖中有底色的部分為有升壓的部分,其餘為沒有升壓)


輸入電壓為 0.5V 的實驗結果中,可以看出 4 匝與 10 匝一樣沒有造成升壓,但是 8 匝與 10 匝的升壓效果相較 0.4V 時提升許多。而纏繞匝數為 6 匝的時候,則是要搭配 12mm 與 18mm 的鐵芯才能達到升壓的效果。

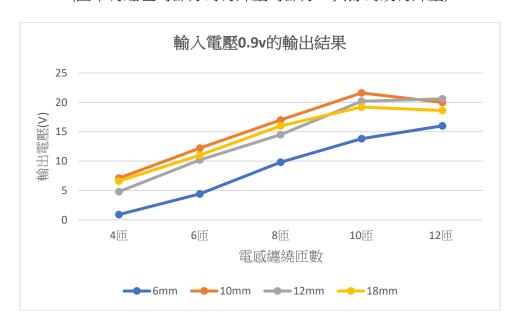
而在所有的搭配中,以 12 匝、18mm 鐵芯的搭配能造成最好的升壓效果; 而當匝數為 12 匝時,升壓效果則是會隨著鐵芯的直徑增加而提升。

四、輸入電壓為 0.6v,不同直徑、匝數的自製電感,輸出電壓結果如下:

直徑	4 匝	6 匝	8 匝	10 匝	12 匝
6mm	0.6v	2.28v	4.68v	6.6v	10v
10mm	2.52	6.71v	10.6v	11.9	12.9v
12mm	1.25	4.84v	7.80v	11v	12.3v
18mm	1.68v	5.44v	8.31	11.1	12.3v

(圖中有底色的部分為有升壓的部分,其餘為沒有升壓)

在輸入電壓為 0.6V 的實驗結果中,唯一沒有升壓的是 4 匝、6mm 鐵芯的搭配。其餘的搭配則是在同樣尺寸的鐵芯時,隨著匝數的增加而造成輸出電壓的上升。


接著我們觀察不同直徑的鐵芯,可以發現採用 10mm 的鐵芯時,在我們測試的不同匝數下,升壓效果明顯優於其他直徑的鐵芯;而採用 6mm 鐵芯製作的電
感,整體看來升壓效果明顯較其他直徑時低。

而在所有的搭配中,升壓效果最好的是 12 匝搭配 10mm 的鐵芯。這樣的搭配能將 0.6V 的輸入電壓升到 12.9V 輸出,整體的升壓幅度約為 21 倍。

五、輸入電壓為 0.9v,不同直徑、匝數的自製電感,輸出電壓結果如下:

匝數 直徑	4 匝	6 匝	8 匝	10 匝	12 匝
6mm	0.9v	4.4v	9.8v	13.8v	16v
10mm	7.1v	12.2v	17v	21.6v	20v
12mm	4.8v	10.2v	14.5v	20.2v	20.6v
18mm	6.6v	11v	16v	19.2v	18.6v

(圖中有底色的部分為有升壓的部分,其餘為沒有升壓)

當輸入電壓為 0.9V 時,跟 0.6V 的狀況差不多。一樣是 4 匝、6mm 的組合沒有升壓,其餘都有升壓。

當鐵芯的尺寸相同時,輸出電壓基本上是隨著匝數的增加而增加。而從我們的數據中一樣可以看出 6mm 的鐵芯整體的升壓效果最差,10mm 的鐵芯除了在12 匝的升壓略低於 12mm 的鐵芯時,其餘匝數都是高於其他直徑的鐵芯的。整體看來,升壓效果最好的是出現在10 匝、10mm 的鐵芯組合。

伍、討論

我們一開始試做實驗時,裝置無法順利升壓,所以我們開始尋找無法升壓的原因。查找過文獻資料後,發現是因纏繞線圈的方式錯誤,因而導致無法升壓。在改變纏繞方式後,升壓結果有得到明顯的改善。

由於電感器能儲存的能量和儲能後釋放出的電壓正比於電感量,此當電路中電感器電感量越高,22Ω電阻端電壓也就越大,當電感器能儲存的能量越多,放電所需的時間也就越長。

接著我們進一步檢視細部數據,發現輸入電壓低於 0.5V 時,升壓的數值有明顯差異。而輸入電壓高於 0.6V 後,由實驗數據中,我們可以發現直徑為 10mm 的鐵芯升壓效果最好,直徑 12mm 與 18mm 的鐵芯升壓值大致相同,升壓效果最差的鐵芯直徑為 6mm。

在線圈匝數部分以 12、10 匝的升壓效果最好,可將 0.6v 的電升至 12.9v; 線圈匝數為 4 匝的組別升壓效果最不明顯。

輸入電壓為 0.3V 時,無法透過此裝置升壓; 0.4~0.5V 這個區間升壓的數值不穩定; 0.6~0.9V 升壓值穩定且最高可升到 20 倍左右。 透過此實驗,我們知道了要完全榨乾電池中剩餘的電壓是不可能的,廢電池剩餘最低不能低於 0.4v 否則將無法升壓。但大部分廢電池大約還有 0.7v 的電量,因此基本上是可以透過裝置提取廢電池中大部分的剩餘電量。

陸、結論

一、焦耳小偷電路升壓條件

經測試,若要使輸入電壓經焦耳小偷電路成功升壓,輸入電壓至少要在 0.4v以上,否則將無法升壓。但輸入電壓在 0.4~0.5v 之間時,線圈纏繞匝數需 在 8 匝以上,才有可能升壓,且此區間升壓值不穩定。

而當輸入電壓高於 0.6V 時,除了 6mm、4 匝的電感外,其餘可依照自己的 升壓需求組合鐵芯和纏繞圈數。

二、升壓範圍

我們作的實驗中,升壓倍數在 0.4V 時,最高可達到 10 倍左右;在 0.5V 時可達到 15.6 倍;在 0.6V 時可達到 21.5 倍;而到 0.9V 時,可以達到 24 倍。就結果來看,輸入電壓越高,可得到的升壓範圍就越廣。

柒、参考資料及其他

一、其他

(一) 輸入電壓為 0.3v, 不同直徑、匝數的自製電感, 示波器輸出結果如下表:

直徑 匝數	4 匝	6 匝	8 匝	10 匝	12 匝
6mm	S CONTROL	S CONTROL			
10mm	S CONTROL				- Carego
12mm					
18mm					

(二) 輸入電壓為 0.4v, 不同直徑、匝數的自製電感, 示波器輸出結果如下表:

直徑	4 匝	6 匝	8 匝	10 匝	12 匝
6mm	200000	322335		322335	2000000
10mm	300000	200000		200000	
12mm	283666	222666	222666	222666	3333300
18mm	322000	322000	322000	322000	2300000

(三) 輸入電壓為 0.5v, 不同直徑、匝數的自製電感, 示波器輸出結果如下表:

直徑	4 匝	6 匝	8 匝	10 匝	12 匝
6mm					
10mm			3 3 3 5 5 6		3333000
12mm					707
18mm			3 0 0 0 0 0 0 0		2200000

(四) 輸入電壓為 0.6v,不同直徑、匝數的自製電感,示波器輸出結果如下表:

直徑 直徑	4 匝	6 匝	8 匝	10 匝	12 匝
6mm	3330000	2000		300000	
10mm		3300000	3	3300000	
12mm		3333366	2	2000000	2220866
18mm	mail			300000	

(五) 輸入電壓為 0.9v,不同直徑、匝數的自製電感,示波器輸出結果如下表:

直徑	4 匝	6匝	8 匝	10 匝	12 匝
6mm					
10mm			9000000	12	200000
12mm	Many Water Street	in ion	SATURN TO MONEY TRANSPORT		110
18mm		2000000	A STATE OF THE STA		

二、參考資料

- 1. DIY Hacks and How Tos (2019年1月19日)。Joule Thief。https://reurl.cc/NZGQrx
- 2. 科技大家談(2019年1月9日)。最適合電子愛好者、初學者學習的小電路、 焦耳小偷電路的理解分析[影片]。Youtube。 <https://reurl.cc/825vNM>
- 3. BUFidea(2020年4月1日)。電感器[影片]。https://reurl.cc/oxZRKD">https://reurl.cc/oxZRKD