屏東縣第 64 屆國中小學科學展覽會 作品說明書

科 别: 生活與應用科學科(二)

組 别:國中組

作品名稱: 魷魚遊戲之椪糖口味之研究

關 鍵 詞: 碳酸氫鈉、焦糖化、梅納反應

編號: B7004

目錄

摘要	g	p.3
壹、	前言	p.3
貳、	研究設備及器材	- p.6
參、	研究過程與方法	- p.7
肆、	研究結果	p.15
伍、	討論	p.23
陸、	結論	p.25
柒、	參考資料和其他	p.27

摘要

在製作椪糖中,我們控制砂糖 30 公克、小蘇打粉 0.5 公克、添加的口味調味劑 10 公克。 花了一個月的時間是做,找尋添加小蘇打粉和調味劑的最佳時間,並一直練習到形成肌肉記憶,讓我們製作的椪糖品質能夠盡可能的一致。

在測試椪糖的品質時,我們測試項目主要有:<mark>酥脆度、溶解度和個人口感。</mark>製作過程中 尋找出最適合做椪糖口味調味劑的最適合的製作技巧、時間點的拿捏成品的分享。

壹、前言

一、研究動機:

之前有一部影片「魷魚遊戲」十分火紅,其中有一關遊戲就是用到「椪糖」,基於好玩及好奇心,我們打算自己也來做椪糖,於是上網查了相關資料並學著做。發現韓國的椪糖實際操作和台灣的椪糖操作相差很多,所以我們決定採用台灣的做法。經過觀察發現,韓國的作法是加入小蘇打粉後,就會迅速將椪糖壓扁;而台灣的椪糖作法則是讓椪糖蓬鬆發脹。

我們嘗試兩種做法之後,決定以台灣蓬鬆的做法來研究。以下就是對椪糖的研究之旅。 希望可以研發各種不同口味的椪糖,這是目前市面上都沒有的創舉,也是我們的創意。

二、研究目的:

- (一)、研究出糖和小蘇打粉的最佳比例。
 - 1、利用不同的糖和小蘇打粉比例,來找出最佳的比例。包括:酥脆度、溶解度和個人口感。
 - 2、加入香味調味劑時,研究出最佳的蔗糖,小蘇打和調味劑比例。
- (二)、研發不同口味的椪糖:
 - 1、我們有 8 種口味添加劑,分別為黑糖、奶茶、抹茶、抹茶拿鐵、可可粉、麵茶粉、芝麻粉、塊狀巧克力。

三、文獻回顧:

椪糖:不加水或以少量水加熱並溶解砂糖或三溫糖。當溫度達到 125℃時,加入小蘇打並快速攪拌以促進二氧化碳的起泡。冷卻時,將其硬化並以發泡和膨脹狀態塑形。

韓式椪糖:出現在 2021 年韓國 Netflix 原創劇《魷魚遊戲》第二集中,作為遊戲中的重要元素。劇集的成功讓椪糖在韓國街頭店鋪的銷量翻倍,以至開始流行全球並出現模仿銷售以及相關活動。TikTok 上也出現人們在家中自製椪糖並模仿劇集中遊戲的短視頻,成為一股挑戰熱潮。

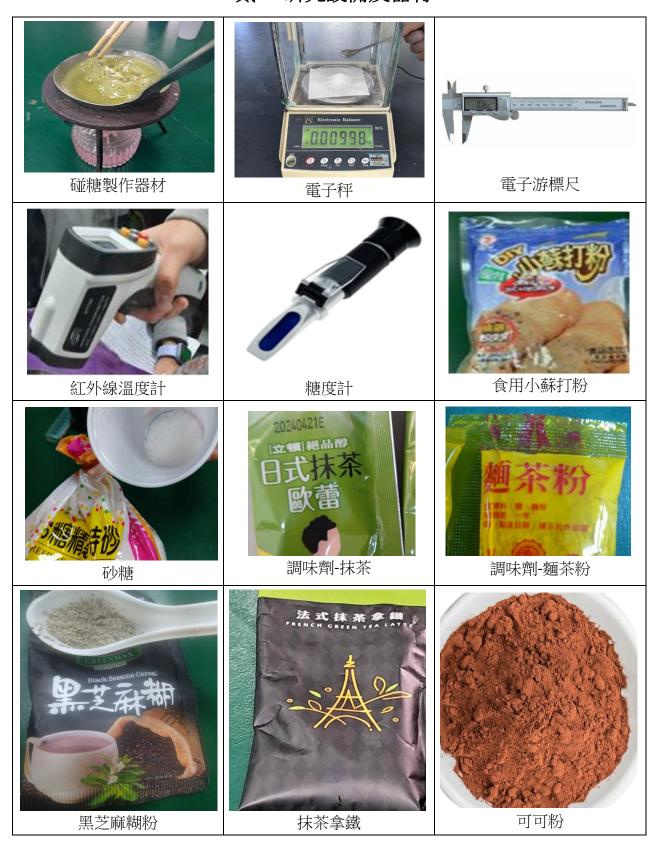
碳酸氫鈉:是一種無機化合物,化學式為 NaHCO₃,俗稱小蘇打、焙用鹼等,為白色細小晶體,在水中呈弱鹼性。在溫度 50℃以上開始逐漸分解生成碳酸鈉、二氧化碳和水。碳酸氫鈉是強鹼與弱酸經中和作用後生成的酸式鹽類,溶於水時呈現弱鹼性。常利用此特性作為食品製作過程中的「膨鬆劑」。化學反應式如下所示:

化學反應式 2 NaHCO₃ → Na₂CO₃ + H₂O + CO₂

蔗糖:為一種雙糖(葡萄糖+果糖),晶體白色。易被酸水解,水解後產生等量的葡萄糖和果糖。形成的無糖可以用作醬油的增色劑。蔗糖甜度為 100。葡萄糖甜度為 64。果糖甜度為 160。當蔗糖加熱時,蔗糖會分解回葡萄糖和果糖兩種單糖分子。這種現象所產生的物質稱為「轉化糖」。果糖與葡萄糖共存時不易形成結晶,導致轉化糖總是呈現黏性液體的狀態。

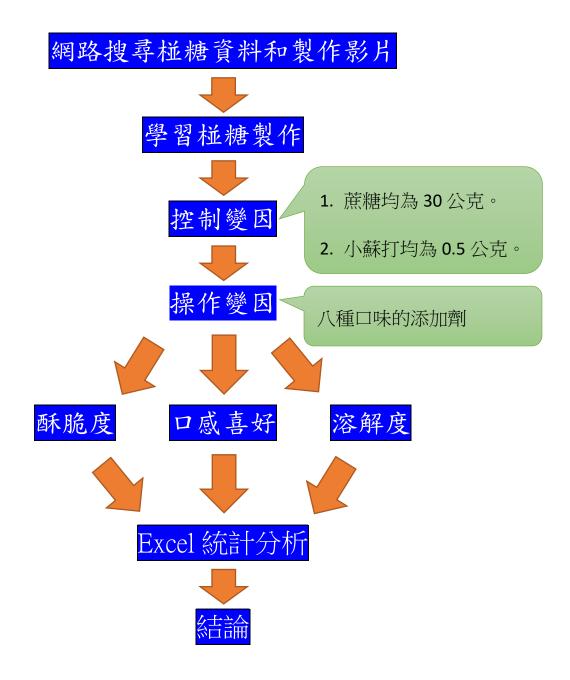
蔗糖水解成果糖和葡萄糖:

黑糖:甘蔗製糖製程上第一道產品,呈粉狀且有較多雜質,富涵營養。黑糖含有超過 90%的碳水化合物,主要成分是蔗糖,含量在 76%~89%之間。黑糖甜度約 80。


牛奶巧克力可以提供 540 卡路里的能量,其中 59%為碳水化合物,30%為脂肪和 8%為蛋白質。

「焦糖化」: 只有單純含糖的食材才會發生焦糖化,蔗糖加熱到約攝氏 185℃會溶解成透明液體,若繼續加熱顏色就會變黃,變淺褐色直到深褐色,最後甚至變成黑碳,那是糖脫水的過程。而且糖平常聞起來是沒有味道的,直到加熱,分子就開始瓦解散發出美妙而風味複雜的揮發性分子,並產生酸味、苦味,顏色越深,味道會越苦。

糖分子 分解方程式: $C_6H_{12}O_6($ 糖 $) \rightarrow 6H_2O($ 水) + 6C(碳)


梅納反應:如果當糖與蛋白質或胺基酸等一起烹煮,就會發生<mark>梅納反應</mark>。含糖食材除了 焦糖化,部份糖分會和後者交互發生一系列化學反應,產生更多樣化的化合物,簡而言之就 是風味比焦糖化更豐富,巧克力、咖啡、楓糖漿、釀造啤酒等都是**梅納反應**的成品。

貳、研究設備及器材

參、 研究過程與方法

實驗架構:

實驗步驟:

- 一、原味椪糖的製作:
- (一)、製作椪糖前的準備工作:
 - 1. 首先將蔗糖秤取30公克,然後放在杯子內備用。
 - 2. 秤取 0.5 公克的小蘇打粉放在小湯匙上備用。
 - 3. 準備好一杯食用清水在旁邊。
 - 3. 將三腳架和酒精燈準備好。
 - 4. 耐熱塑膠袋預先鋪好,準備快速倒入糖漿。
 - 5. 一人負責攪拌糖漿,一人負責準備加小蘇打粉,另一人準備幫忙刮下糖漿。

準備好小蘇打粉

鋪好耐熱袋

準備好湯匙刮糖漿

圖 01 為製作椪糖前的準備工作

- (二)、操作步驟,如下圖02所示。
- 1. 我們先取 30 公克的砂糖, 然後將砂糖倒在大湯瓢上。
- 2. 加上少許的清水在砂糖上,只要將砂糖潤濕即可
- 3. 然後將大湯瓢放在酒精燈上加熱。

秤取 30 公克的蔗糖

加水潤濕準備加熱

酒精燈上加熱

圖 02 為原味椪糖的開始製作

- (三)、椪糖的形成,如下圖03所示。
 - 剛開始加熱時,只要稍微攪拌即可。當加熱到冒大泡沫和大量白煙,就要快速攪拌,避免湯瓢底部砂糖燒焦,可以避免泡沫溢出湯瓢之外。
 - 2. 等白煙(水蒸氣的小水滴)消失時。就是準備加入小蘇打粉的最佳時機。將湯瓢移開火源, 然後停放在桌面上,此時將秤好重量的小蘇打粉放入滾燙糖漿中。然後快速地攪拌,讓 小蘇打粉和糖漿充分混合。
 - 3. 在小蘇打粉開始分解產生二氧化碳時,迅速將尚未凝固的糖漿倒入耐熱袋上,等待膨脹 凝固。即可形成椪糖。

圖 03 為椪糖的加熱和形成

(四)、開始添加各種口味的添加劑,成品如下圖 04 所示。

圖 04 為八種口味的椪糖成品

(五)、椪糖酥脆度的測量,如下圖 05 所示:

- 1. 將成品放置在壓碎機上。被壓的椪糖,我們會先掰開測量內部的氣泡大小。編號 A.B.C 分別為椪糖內部氣泡由大到小的編號。
- 2. 在椪糖旁邊放置下載分貝計 APP 的手機。
- 3. 然後將椪糖壓碎,測量椪糖被壓碎之後所發出的聲響大小。

椪糖放置在壓碎機上

聲音測量放置在椪糖旁

測量到的聲音分貝大小

圖 05 為測量椪糖的酥脆度

(六)、測量椪糖的溶解度,如下圖 06 所示:

- 1. 將椪糖泡入燒杯中,水須完全沒過椪糖。被泡入的椪糖,我們會先掰開測量內部的氣泡 大小。編號 A.B.C 分別為椪糖內部氣泡由大到小的編號。
- 2. 將椪糖泡水,然後每10秒用手輕捏椪糖,直到椪糖可以輕易的軟爛的被捏爛。
- 3. 紀錄椪糖被水泡到可以用兩指捏爛的時間。

將椪糖泡入燒杯中

嘗試用兩指捏泡水的椪糖

軟爛的椪糖

圖 06 為測試椪糖的溶解度

(七)、測試椪糖的口感,測試方式如下:

- 1. 每種口味的椪糖,我們都製作了,然後將每種椪糖都大約切成 10 份。如下圖 07-1 所示。
- 2. 將九種口味(含原味椪糖),每一種口味均有20小塊。
- 3. 在班上邀請 20 位同學(1 號到 10 號為男生, 11 號到 20 號為女生)幫忙試吃, 然後請同學 評分。從最喜歡的開始排名,第一名9分到最後一名1分。如下圖 07-2 所示。
- 4. 將調查評分表回收之後,輸入電腦統計。
- 5. 被同學試吃的椪糖,我們會另外紀錄被吃的椪糖特殊編號,編號 A.B.C 分別為椪糖內部 氣泡由大到小的編號。如下圖 07-3 所示。

切成小塊的椪糖

同學的試吃評分

測量椪糖的內部氣泡大小

圖 07 為同學試吃的口感測試

- (八)、將九種椪糖作甜度測定,如下圖 08 所示。
 - 1. 將椪糖搗碎溶於水中,形成飽和黏稠狀的糖水狀態。
 - 2. 使用甜度計測量每一種椪糖的的甜度大小。

製作飽和糖水

椪糖的水溶液滴在甜度計上

記錄甜度計上的甜度高低

圖 08 為椪糖的甜度測量

(九)、將觀察到的甜度記錄下來,並且輸入電腦統計比較。如下圖 09 所示,為我們測量各種 椪糖數據和觀察甜味計的圖片。

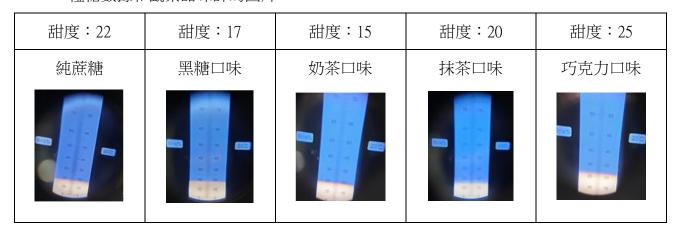


圖 09 為部分調味劑在甜度計所觀察的圖片和數據

(十)、失敗的作品,如下圖 10 所示:

- 1. 水分的量還未到達可以乾燥的情況時,來離開火焰然後加入小蘇打粉。導致糖漿無法乾燥成形,如下圖 10-1 所示。
- 2. 加熱過程中,太晚離開火焰,導致過分加熱而燒焦,如下圖 10-2 所示。
- 3. 加熱過程中,加入的添加劑太早,導致添加劑焦糖化,如下圖 10-3 所示。變成麥芽糖的流體狀,無法成形。

圖 10-1 水分太多未成型

燒焦失敗的椪糖

變成液態麥芽糖

圖 10 為失敗的作品

肆、研究結果

- 一、在椪糖酥脆度的測試中,我們測試九種椪糖,得到以下兩組數據,如下表 11 所示:
- (一)、聲響(分貝)的數據: (氣泡大小依據: A:超過 2mm、B:1~2mm、C:1mm 以下)

	黑糖	奶茶	抹茶	抹茶	可可	麵茶	芝麻	巧克力	原味
響度 (分貝)	59	72	58	61	60	51	48	59	67
氣泡 (大小)	В	A	В	A	В	С	С	A	A

表 11 為椪糖酥脆度的測試數據表

- 二、在椪糖溶解度的測試中,我們測試九種椪糖,得到以下兩組數據,如下表 12 所示:
 - (一)、椪糖可以輕易的被捏爛的數據:(氣泡大小依據: A:超過 2mm、B:1~2mm、C:1mm 以下)

	黑糖	奶茶	抹茶	抹茶	可可	麵茶	芝麻	巧克力	原味
時間 (秒)	130	140	260	140	240	120	110	120	70
氣泡 (大小)	В	В	С	В	С	В	В	В	A

表 12 為椪糖溶解度的測試數據表

三、試吃的口感評分中,同學個人認為最佳的打 9 分,依此類推,最差的打 1 分。評量表如下表 13 所示。請同學在試吃完之後評分,我們將所有的數據已 Excel 統計。

	А	В	С	D	E	F	G	Н	I	J
1		黑糖	奶茶	抹茶	抹茶拿	可可	麵茶	芝麻	巧克力	原味
2	1	9	8	5	4	7	3	1	6	2
3	2	7	6	8	4	5	9	3	2	1
4	3	7	8	9	6	2	4	5	1	3
5	4	8	7	1	2	6	9	5	4	3
6	5	6	9	7	8	5	1	3	2	4
7	6	6	5	7	9	1	8	2	4	3
8	7	5	7	9	6	4	8	2	3	1
9	8	8	1	7	9	6	2	4	5	3
10	9	9	8	5	7	1	6	2	3	4
11	10	7	6	8	9	2	3	5	4	1
12	男生平均	7.2	6.5	6.6	6.4	3.9	5.3	3.2	3.4	2.5
13	11	1	7	5	6	8	4	3	9	2
14	12	2	3	4	8	9	5	7	6	1
15	13	9	3	9	4	5	2	1	7	6
16	14	1	7	9	8	6	2	3	5	4
17	15	2	3	4	9	5	6	8	7	1
18	16	8	9	7	6	4	1	2	5	3
19	17	9	8	6	7	5	2	1	4	3
20	18	1	2	3	4	7	5	6	9	8
21	19	6	5	4	7	8	2	9	1	3
22	20	3	4	5	7	6	9	8	2	1
23	女生平均	4.2	5.1	5.6	6.6	6.3	3.8	4.8	5.5	3.2
24	總平均	5.7	5.8	6.1	6.5	5.1	4.55	4	4.45	2.85

表 13 為同學試吃之後的口感評分表

四、將九種椪糖的甜度紀錄如下表 14 所示。

	黑糖	奶茶	抹茶	抹茶	可可	麵茶	芝麻	巧克力	原味
甜度	17	15	20	22	18	26	24	25	22

表 14 為九種椪糖的甜度數據表

伍、討論

- 一、雖然我們將很多變因控制在我們可以操作的範圍內,但還是有多的變因我們無法控制, 導致還是產生很多的誤差。以下為我們討論後的一些誤差的變因:
- (一)、酒精燈的火焰大小:要將三個人的酒精的火焰控制到一致性,人為操控真的很難,只 能用目測調整。雖然是很難控制,但我們還是每人每次都使用同一個酒精燈,而且酒 精的量都控制在 6~8 成滿之間。而且稍微有風的時候,也會讓火焰的方向稍微偏移。
- (二)、每個人攪拌的速度有所差異:雖然我們事先有溝通過,攪拌的速度大約是**每秒 2~3 下**,但是還是難免會有誤差。尤其是在加入小蘇打粉之後,因為會椪糖會很快的凝固,所以我們都會不知不覺的加快速度。這也會導致椪糖的氣泡大小和氣泡數量的差異主要因素之一。
- (三)、每個人<mark>攪拌的位置</mark>有所差異:筷子攪拌在湯瓢內時,可能會偏在中央攪拌,時常忽略 湯瓢的外圍。有人**前後攪拌較多,繞圈圈攪拌較少**;有人**左右攪拌較多,上下像打蛋** 方式的攪拌較少等等。雖然我們都彼此約束,盡可能方式一致,但個人的習慣還是很 難改變。
- (四)、將椪糖的糖漿由湯瓢撥到耐熱袋的時候:無法將糖漿百分百撥下來,因為有時椪糖會 **太快凝固**,導致沾黏在湯瓢上面的椪糖殘留太多。所以我們只能加快刮下來的速度, 讓誤差降低到最少。
- (五)、我們花了將近一個月的時間來練習製作椪糖,然後在花三個月製作各種口味的椪糖, 因為椪糖的製作失敗率還是蠻高的,包含寒假都每天到校實驗。因為最前期所做的椪糖較生疏,失敗作品也較多。但是只要不是太差,我們也會加入數據當中來平均,這當然也會造成一些誤差。不過我們也不敢保證每次的手感都會相同,只能說熟能生巧, 然後多次平均,減少誤差。
- (六)、為了將椪糖的規格統一在一定的範圍內,我們設定蔗糖的重量為30公克,要添加口味調味劑時,則調味劑軍控制為10公克。

- 二、椪糖吃之前的香氣和吃的時候的香味,因為個人主觀因素和無法量化處理。所以我們就沒有加以討論。但大多數的同學還是表示,香味有保留下來,而且一聞就知道是什麼口味的。椪糖香味並未因為加熱糖漿而使香味消失。
- 三、**酥脆度**,也和香味一樣,因為**很難量化**。所以我們利用椪糖**受壓時的承受度**,來當作椪糖的「**酥脆度」**表現,因為壓碎椪糖時所發出的聲音,會因為酥脆度的不同而有所差異。 所以我們在討論之後,用「聲音的響度」來當作「**酥脆度**」的表現。
- 四、剛加入小蘇打粉時,因為需要快速攪拌的關係,所以可能會將小蘇打粉撥開到旁邊。所以我們在加入小蘇打粉時,會先將小蘇打粉向下壓入糖漿之中,使它沒入在糖漿內。然後攪拌的速度再由慢而快。不過,偶爾也會有失誤的時候,只要小蘇打粉撒出湯瓢太多太明顯,我們就放棄從新再做一次。
- 五、我們測量椪糖形成之後的**氣泡直徑**。椪糖的氣泡大小會明顯影響椪糖的酥脆度。也會明顯的影響椪糖的溶解度和口感。
- 六、椪糖的**對水的溶解度越高**,代表椪糖的**入口即化**越強,吸收水分(口水)的能力越好。
- 七、事實上,我們也做了一些非常蓬鬆的椪糖,尤其是中央有一個大氣泡的。但是在測量酥脆度時,機械一夾上,還沒使力,椪糖就碎了。而這些椪糖我們就無法將它列入平均。 但是這些漂亮的失敗品,我們在食用時,或是邀請同學吃時,大家幾乎都說,這種比較好吃。但是因為無法收集數據,所以只能作罷。我們也曾經想改良測量的方式,但是椪糖有時真的太酥了,真的一拿就鬆垮了。所以真的是無法列入平均測量,只能說可惜。
- 八、若小蘇打的量太多時,吃起來的口感就會<mark>有苦味</mark>,所以我們做後討論的結果,小蘇打的 重量就固定在 0.5 公克。
- 九、因為太容易產生失敗的作品,所以我們很早就開始練習。但是實驗過程中,還是會有很多的因素,導致我們作品的失敗。例如:太早離開火焰、太早添加口味劑、加熱太久燒焦、水加太多導致加熱時間太長…..等。所以我們的產品產生個數並不會太多,所以我們的參考數據就只能依我們目前所作的個數來做分析。

陸、結論

- 一、椪糖的甜度和純糖做比較,很明顯的下降很多,而且<mark>下降的比例</mark>非常明顯,甜度由 100 下降到 20 左右。所以我們的結論是:
- (一)、椪糖的甜度約只有原料這糖甜度的 1/6。甜度真的改變非常多,可能和「焦糖化」、「轉化糖」有關。
- (二)、但是椪糖的熱量還是沒有改變,所以還是不能吃太多。因為椪糖的主要成分還是糖。 而在和同學的訪談中發現,吃太多的同學還是容易會有□渴的感覺。
- 二、就縮脆度的實驗中,我們得到重大的結論。
- (一)、平均氣泡越大,所產生的響度越大,而同學所反應的口感酥脆度也越好。
- (二)、下表 15 為我們從新將氣泡大小和聲音響度的重新排列。(響度由大而小排列)

	奶茶	原味	抹茶	可可	巧克力	黑糖	抹茶	麵茶	芝麻
響度(分貝)	72	67	61	60	59	59	58	51	48
氣泡(大小)	A	А	A	В	А	В	В	С	С

表 15 為九種椪糖的響度由大而小排列和氣泡直徑的關係

- 三、在椪糖溶解度的測試中,我們也有一個重大發現。
- (一)、平均氣泡越大,椪糖在水中的溶解速度越快,而同學所反應的入口即化的口感也越好。
- (二)、下表 16 為我們從新將氣泡大小和椪糖的溶解秒數的重新排列。(秒數由少而多排列)

	原味	芝麻	巧克力	麵茶	黒糖	奶茶	抹茶	可可	抹茶
時間(秒)	70	110	120	120	130	140	140	240	260
氣泡(大小)	A	В	В	В	В	В	В	С	С

表 16 為九種椪糖的溶解秒數由少而多的排列和氣泡直徑的關係

四、就椪糖斷面的氣泡而言,我們發現以下幾個結論:

- (一)、在椪糖的加入小蘇打後,<mark>攪拌的方式和速度</mark>還有時間,的三大因素是造成氣泡大小和 數量的主要因素。
 - 1. 造成氣泡大的原因:攪拌太慢、攪拌時間不足、攪拌不均勻、單一方式在攪拌。
 - 造成氣泡綿密細小的原因:攪拌不會太慢、攪拌時間足夠、攪拌均勻且攪拌方式時常變化,每個位置都有均勻攪拌到。

五、關於試吃的口感統計,如下表 17 所示。

	第一名	第二名	第三名	第四名	第五名	第六名	第七名	第八名	第九名
男生	黑糖	抹茶	奶茶	抹茶	麵茶	可可	巧克力	芝麻	原味
分數	7.2	6.6	6.5	6.4	5.3	3.9	3.4	3.2	2.5
女生	抹茶	可可	抹茶	巧克力	奶茶	芝麻	黑糖	麵茶	原味
分數	6.6	6.3	5.6	5.5	5.1	4.8	4.2	3.8	3.2

表 17 為椪糖是吃之後的平均分數統計表

- (一)、抹茶和抹茶拿鐵,這二種口味,男生女生都喜歡。而原味和芝麻這二種口味,男生女生都較不喜歡。
- (二)、由分數可以看出,男生的喜歡和不喜歡的表現較為明顯,因為分數表現較懸殊。包括 分數的全距較大;前半段分數集中、後半段的分數又另外集中。
- (三)、原味的椪糖,在大家的評分之下,普遍較不受歡迎。可能就只是甜而已,CP 值較低。

柒、參考資料及其他

- 一、翰林出版社,自然與科學第四冊,第五章 有機化合物。
- 二、南一出版社,自然與科技第四冊,第五章 5-5 食品科技。
- 三、徐若瑄、潘虹吟(民 106)。中華民國第 57 屆中小學科學展覽會作品說明書-利用科學方法研究古早味椪糖。作品編號 052201。

取自:https://twsf.ntsec.gov.tw/activity/race-1/57/pdf/052201.pdf

四、愛料理。古早味甜點-膨糖(椪糖) by 葵兔子:

取自:https://icook.tw/recipes/186371/dishes

五、辜慧雪(民 105)。台南人的童年零食:古早味「膨糖」在家這樣做。

取自:https://food.ltn.com.tw/article/4888

六、泛科學。糖會改變質地和甜度-料理科學。

取自:https://pansci.asia/archives/87237

七、維基百科。椪糖。

取自:https://zh.wikipedia.org/wiki/%E6%A4%AA%E7%B3%96

八、維基百科。碳酸氫鈉。

取自:https://zh.wikipedia.org/wiki/%E7%A2%B3%E9%85%B8%E6%B0%A2%E9%92%A0

九、維基百科。蔗糖。

取自:https://zh.wikipedia.org/wiki/%E8%94%97%E7%B3%96

十、 YouTube 影片, 椪糖製作過程, 台南府中街古早味零嘴。

取自:https://www.youtube.com/watch?v=elNiCPC1Luc

十一、 YouTube 影片,在實驗室如何製作膨糖

取自: https://www.youtube.com/watch?v=kp5Qr6ugXdw

十二、 Youtube 影片。AJ 食旅 Recvideo(民 109)。椪糖製作過程 - 台南府中街古早味零嘴。

取自:https://www.youtube.com/watch?v=elNiCPC1Luc

十三、Youtube 影片。復華國中(民 107)。煮椪糖教學(一)。

取自:https://www.youtube.com/watch?v=Gc0a4044SsU