屏東縣第65屆中小學科學展覽會 作品說明書

科 別:生活與應用科學(三)-(化學工程/環境科學)

組 别:國中組

作品名稱:環保「膏」手—更環保的石膏杯墊

關鍵詞:環保杯墊、石膏、蛋殼粉

編 號:B8014


目錄

1	商要	第2頁	Į
_	、研究動機/文獻探討	第2頁	
=	、研究目的/實驗流程	第3頁	
Ξ	、研究器材及設備	第4頁	
四	、研究過程及方法	第 5~9 頁	
	(1) 探討固定量的石膏加入不同材料的最佳比例	第5	頁
	(2) 探討不同組合影響吸水能力與耐壓度的多寡	第5~8〕	頁
	(3) 探討定量的石膏加單一材料加混合材料的最佳比例	第8~9〕	頁
六	、研究結果與討論	第 9~25〕	頁
セ	、結論	第 25~26	頁
λ	、交老立尉咨糾	笙 26∼27	百

作品名稱:環保「膏」手—更環保的石膏杯墊

摘要

本作品探討如何製作與實驗出粉筆灰、蛋殼粉、碳粉、牡蠣殼粉、咖啡渣材料最能替代石膏杯墊與珪藻土杯墊的比例,包括烘乾及曬乾、矽膠皿及培養皿做比較,以及測量其吸水性與硬度,並做出便宜且環保的杯墊。我們發現許多材料不加石膏即易碎,因此只能減少石膏的使用量,例如水和粉筆灰的比例以 3:2 為最佳,可以成型但粉筆灰與水的組合皆有裂痕;水與牡蠣殼粉的組合皆易碎。水與石膏以 3:3 為最佳比例,此為對照組;水、粉筆灰和石膏以 20:10:30 的比例放入矽膠皿中,用果乾機以 40 度烘乾為最佳比例;水、蛋殼粉、石膏以 20:20:10 的比例放入矽膠皿中,用果乾機以 40 度烘乾為最佳比例;碳粉、咖啡渣為防霉、增加吸水量之材料,須搭配其他材料作為輔助。

壹、前言

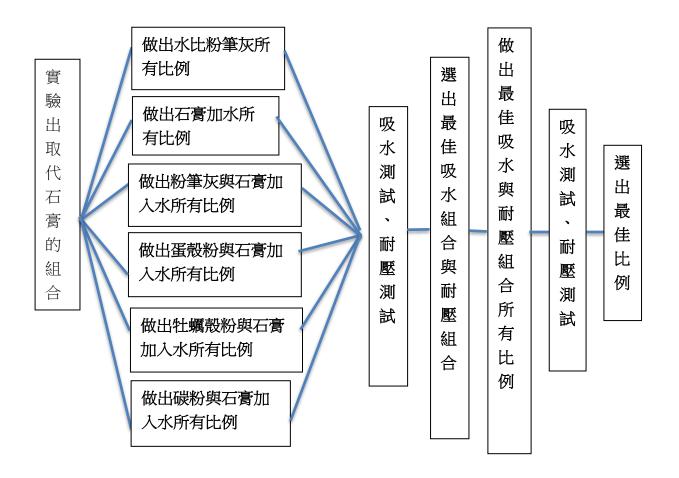
一、研究動機

我們在購物平台上選購杯墊,但發現珪藻土杯墊太貴,石膏杯墊則不環保,因此我們嘗試用各種環保材料做出杯墊,粉筆灰常常會在打掃時間被丟到垃圾桶;吃完蛋與海鮮後,蛋 殼粉與牡蠣殼粉多數會被當成廚餘丟掉;咖啡機的殘留咖啡渣也經常會進到垃圾桶;碳粉雖不環保,但僅加少量以增加吸水性,所以我們想利用這些特性來製作出能與石膏杯墊抗衡且 材料好取得、便宜、環保的杯墊。

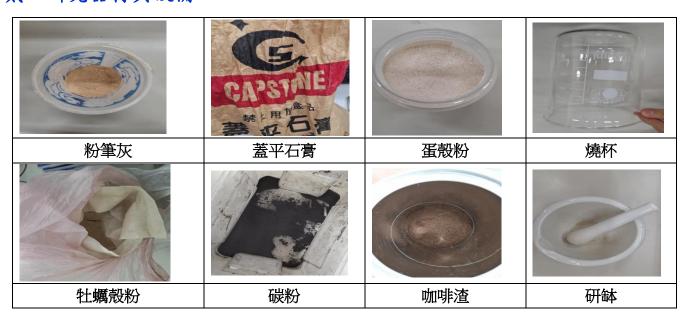
二、文獻探討

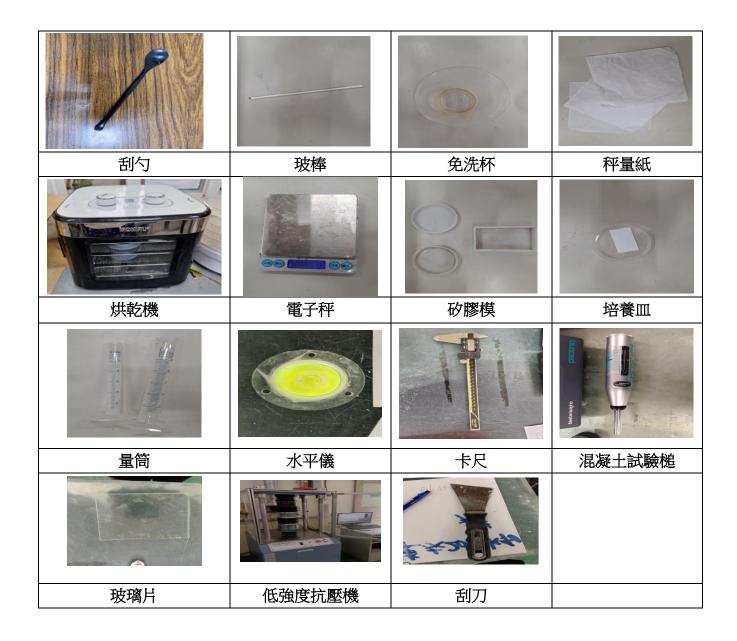
(一)中華民國第61屆中小學科學展覽會生活與應用科學(二)科 吸奇杯墊

他們使用了石膏和水泥加入彈殼粉和粉比灰中混合,試圖製作出環保的杯墊,而我們認為能夠測試更多不同的材料,且單純只使用石膏,並嘗試用更準確的方式測試杯墊的吸水性與抗壓性。


- (二)中華民國第 **58** 屆中小學科學展覽會 化學科 **尋找玉米黏土的真面目** 他們嘗試製作出更環保且實用的玉米黏土,因為無法重複利用而啟發,也讓我們出現 了製作出環保且實用杯墊的靈感。
- (三)中華民國第 61 屆中小學科學展覽會 生活與應用科學(二)科 「**殼」已再生-垃圾變黃** 金

他們使用吃剩的淡菜殼,做出許多不同的實用物品,創造出了一條新的產業,也達到了環保再利用的效果,因此我們也試著用少許石膏及其他能夠再利用的廢棄材料,製作出更環保且實用的杯墊。


三、研究目的


- 、探討固定量的石膏加入不同材料的最佳條件
- (一) 不同水量對各材料杯墊的影響
- (二) 曬乾與烘乾所產生的差異
- (三) 用培養皿與矽膠皿所產生的差異
- 二、探討不同組合所影響的吸水能力與耐壓度
- (一) 加水量不同是否影響杯墊的重量而影響吸水率
- (二) 不同材料對吸水率、吸水時間、飽和吸水量的影響
- (三) 不同組合何者的耐壓度最高
- 三、探討固定量的石膏加入混合材料的最佳比例
- (一) 加入碳粉的最佳比例
- (二) 加入咖啡渣的最佳比例
- (三) 加入碳粉與咖啡渣的最佳比例

四、研究流程

貳、研究器材與設備

參、實驗過程與方法

【研究一、探討固定量的石膏加入不同材料的最佳條件】

- 1.用電子秤取添加材料,例:粉筆灰、蛋殼粉、碳粉、牡蠣殼粉
- 2.以量筒量出 10ml 的水
- 3.倒入紙杯攪拌均勻,並倒入培養皿或矽膠模具中
- 4.等待水分蒸發完成(曬乾或烘乾)
- 5.比較材料比例、模具及乾燥方式做出的杯墊外型差異及特性

【研究二、探討不同組合所影響的吸水能力與耐壓度】

(一)吸水時間實驗步驟

1.將 5c.c.水倒入測驗物表面 2.倒下後開始計時,並記錄吸 水當下狀態及表面乾燥時間 吸水時間:杯墊對 5c.c.水的吸水時間 吸水率:一定時間內,加水後重量除以原先重量之值 耐壓程度:厚度一致下,最高壓力承受程度 飽和吸水量:該杯墊最高吸水量

各組碳粉:石膏:水(曬)吸水 時間實驗

石膏:蛋殼粉:水:碳粉(曬乾)吸水時間實驗

石膏:水(烘乾)30:30 吸水 時間實驗

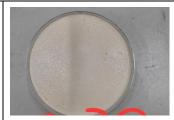

(二)飽和吸水量實驗步驟

- 1. 第 1 次加水加 5 克
- 2.第2次之後皆用3克,直到表面有水流動為止
- 3.將模具傾斜把水倒入燒杯
- 4. 再將裡面的水倒入量筒並測量
- 5.把加入全部的水量减掉量筒的水量即為飽和吸水量

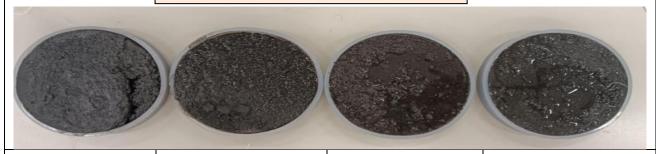
右圖將燒杯裡面的水倒入量筒並測量

左圖將模具傾斜 把水倒入燒杯

判斷標準: 以傾斜是否流出水作為依據


粉筆灰:石膏:水 20:10:30 (烘)測試飽 和吸水量

碳粉:石膏:水 (曬乾)測 試飽和吸水量



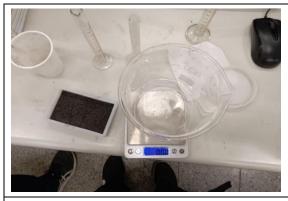
蛋殼粉:石膏:水 20: 10:15 (烘乾) 測試 飽和吸水量

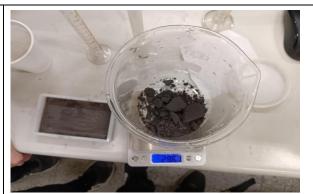
石膏:水 30:20 (烘乾) 測試飽和吸水量

碳粉:石膏:水(烘乾)測試飽和吸水量

水量:35ml 水量:20ml 水量:25ml 水量:30ml

石膏:蛋殼粉:水:咖啡渣(曬) 測試飽和吸水量


石膏:蛋殼粉:水:咖啡渣:碳粉 (曬) 測試飽和吸水量

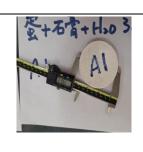

膏:蛋殼粉:水:碳粉(曬乾) 測 試飽和吸水量

(三)吸水率實驗步驟:

- 1. 測量該組的質量與加水後的質量(加上飽和吸水量)
- 2.加水後的質量除以該組的質量

測量碳粉:石膏:水20:10:35(曬乾)

碳粉:石膏:水20:10:35(曬乾) 原先重量

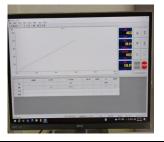

(四)耐壓程度實驗步驟

- 1.將所有組合編號,不測試碳粉、牡蠣殼粉
- 2.用卡尺測量直徑
- 3.用石膏填補凹槽,避免發生其中心塌陷
- 4.嘗試以試驗槌測量杯墊的強度
- 5. 用抗壓機測試杯墊表面所能承受的重量

8 69.65mm

將石膏塗上

用玻璃片壓平


靜置一段時間

測量杯墊直徑

碎裂的失敗品測試是否可測量,發現 試驗槌的發力集中於一點,極容易碎 裂,因此改用低強度抗壓機

將杯墊放入低強度抗壓機並觀察其承受壓力變化

未等其凝固即刮 下因此碎裂(凝固 後較容易)

低強度抗壓機 17 噸,但仍幾乎無損,因為 杯墊形狀為扁平狀,扁平、受力面積大不 符合原材質所能承受之重量,所以決定不 採用此方法

這形狀才能在低強度抗壓機 更準確測量出其硬度

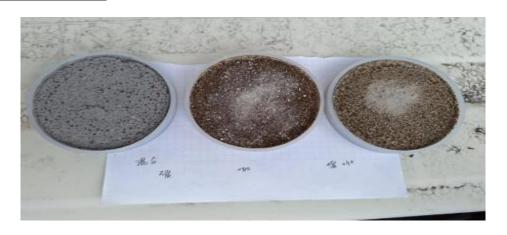
【研究三、探討固定量的石膏加入混合材料的最佳比例】

- 1.混和成分加入水與石膏最佳比例
- 2. 混和成分只採用最硬、飽和吸水量與吸水時間最佳之材料,不採用如粉筆灰、牡蠣殼粉
- 3.碳粉以增加吸水量,咖啡渣以防霉
- 4.石膏:蛋殼粉:水最佳比例為 10:20:20(曬乾),因此其他組皆為曬乾,配方如下表:

成分	比例	實際重量
石膏:蛋殼粉:水:咖啡渣(曬乾)	5:10:10:1	10;20:20:2g
石膏:蛋殼粉:水(曬乾)	1:2:2	10:20:20g
石膏:蛋殼粉:水:碳粉(曬乾)	5:10:10:1	10;20:20:2g
石膏:蛋殼粉:水:咖啡渣:碳粉 (曬乾)	10:20:20:1:1	10:20:20:1:1g

5.咖啡渣與碳粉過於柔軟,極不適合加入大量

取咖啡渣與碳粉重量總共兩克,若只有一種,則該種取兩克;若有兩種,則一種取一克



去除表面 咖啡渣

去除表面咖啡渣前

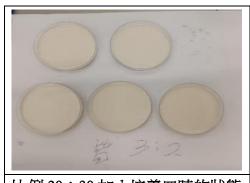
去除表面咖啡渣後(黑色部分為碳粉)

混和成分曬乾完成的狀態

成品的咖啡渣大多在表面,少數在杯墊裡,但導致其硬度大幅降低 因此不考慮,易碎可能是因為有碳粉加入太多導致

6.取碳粉重量一克,配方如下表

成分	比例	實際重量
石膏:蛋殼粉:水(曬乾)	1:2:2	10:20:20g
石膏:蛋殼粉:水:碳粉(曬乾)	10:20:20:1	10:20:20:1g
石膏:蛋殼粉:水:碳粉(曬乾)	100:200:200:5	10:20:20:0.5g
石膏:蛋殼粉:水:碳粉(曬乾)	100 : 200 : 200 : 3	10:20:20:0.3g


肆、研究結果

【研究一、探討固定量的石膏加入不同材料的最佳條件】

一、石膏加水最佳比例

表一:水與石膏不同比例及模具製作出杯墊的差異

水比石膏的量	凝固時間	烘乾完成的狀態 (矽膠皿)	烘乾完成的狀態 (培養皿)	加入模具時的狀態
30:30	數小時	硬度高,不易碎	硬度高,不易碎	易倒入,表面多水
20:30	10 多分鐘	性質與 3:3 相當	性質與 3:3 相當	易倒入,表面濕潤
15:30	3分鐘	加水時不易成為流體,不採納		無法倒入,必須用 玻棒挖出

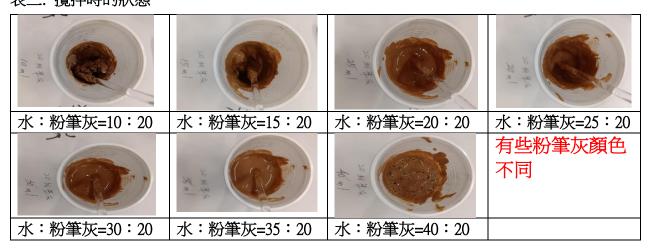
比例 20:30 加入培養皿時的狀態

烘乾完成的狀態(培養皿)

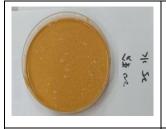
烘乾完成的狀態(矽膠皿)

結果與討論:

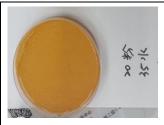
- 1.三種比例皆可成形,10g水者過於黏稠,不易塑造平整樣貌,其他二者較佳。
- 2.30g 水雖須花較多時間凝固,但成形後不遜色於 20g,強度相當,以吸水率選出最佳者。


二、水與粉筆灰之最佳比例

我們以不同的水與粉筆灰比例測試,結果如下表:


表二:各組比例與狀態

水比粉筆灰的量 粉筆灰:20.0g	加入培養皿時的狀態	烘乾完成的狀態	曬乾完成的狀態
1.水:10ml (10:20)	無法成為流體,不採納		
2.水:15ml (15:20)	無法成為流體,不採納		
2.水:20ml (20:20)	極黏稠,要用玻棒挖出	多裂痕,易碎,不採納	全部碎裂
5.水:25ml (25:20)	黏稠,多 氣泡	較 3:4 硬,不易碎	全部碎裂
6.水:30ml (30:20)	可成為流體,較多氣泡,稍微稀	光滑,較 2:1 不易碎, 最硬,可成形	光滑,較 2:1 不 易碎,硬
7.水:35ml (35:20)	可成為流體,多氣泡,稀, 蒸發時間較久	光滑,易碎,表面有裂 痕,可成形	光滑,易碎,表 面多裂痕
8.7K:40ml (40:20)	可成為流體,極多氣泡,極 稀,蒸發時間久	(陰乾)光滑,易碎,可 成形	光滑,易碎,最 硬,有裂痕


表三: 攪拌時的狀態

表四: 加入培養皿時的狀態

水:粉筆灰=25:20

水:粉筆灰=30:20

水:粉筆灰=35:20

水:粉筆灰=40:20

表五:成形後狀態

烘乾完成的狀態

20:20

25:20

30:20

水:粉筆灰 35:20

20

水:粉筆灰 40:

曬乾完成的狀態

水:粉筆灰

20:20

水:粉筆灰

25:20

30:20

水:粉筆灰

水:粉筆灰

35:20

水:粉筆灰40:

20

結果與討論:

- 1.決定成品以蒸發完成的硬度優先於加入培養皿時的難易
- 2.所有比例皆有裂痕,不太適用於製作杯墊

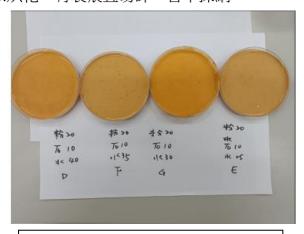
曬乾以 3:2 比例視為最佳比例, 烘乾以 3:2 比例視為最佳比例

3.發現烘乾較曬乾不易產生裂痕,但吸水率變化沒有一定的規律變化

三:定量粉筆灰與石膏下,加入適當量的水

表五:以培養皿為容器

粉筆灰:石膏:水	加入培養皿時的狀態	烘乾後的狀態	曬乾後的狀態
20:10:40	可成為流體,無氣泡,表面極 多水	大塊碎裂,裂痕較少	大塊碎裂,裂痕較 少
20:10:35	不易流動,多氣泡,表面有些 水	小塊碎裂,裂痕多	小塊碎裂,裂痕多
20:10:30	不可流動,多氣泡,表面少水	大塊碎裂,裂痕較 40m 水的多	
20:10:25	不可流動,有氣泡,大多無法 自然流下	裂痕少,形狀大致完 整	裂痕少,形狀大致 完整
20:10:20	過於黏稠,不採納		


結果與討論:

1.皆無法當作杯墊的材料,因無法保留完整

曬乾:蒸發完成的狀態 20:10:40 優於 20:10:30 優於 20:10:35 加入培養皿時的狀態 20:10:40 優於 20:10:35 優於 20:10:35

2.20:10:40 最優,但皆有裂痕,因此皆不採納

3.烘乾:有裂痕且易碎,皆不採納

各個粉筆灰:石膏:水加入培養皿

時的狀態

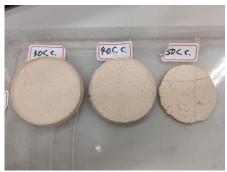
各個粉筆灰:石膏:水烘乾後的狀態

表六:以矽廖皿為容器

粉筆灰:石膏:水	加入矽膠皿時的狀	曬乾完成的狀態	烘乾完成的狀態
	態		
20:10:50	可自然流下,極少	周圍碎裂,中心	周圍碎裂,中心易
	氣泡	易碎	碎
20:10:40	大多可自然流下,	周圍有裂痕,硬	硬度較 20:10:30
	極少氣泡	度較差	差,周圍結構鬆散
20:10:30	黏稠,無法自然流	硬度佳,無裂痕	硬度最佳,無裂痕
	下,無氣泡		

結果與討論:

1.20:10:50 周圍碎裂,中心易碎,不採納此比例


2.20:10:40 與 20:10:30 可納入考慮,以 20:10:30 最優

3.發現矽膠皿較培養皿不易產生裂痕,因此不採用培養皿

4.以 20:10:30 烘乾較曬乾不易產生裂痕,因此 20:10:30 烘乾為粉筆灰:石膏:水最佳比例

各組粉筆灰:石膏:水加 入矽廖皿時的狀態

粉筆灰:石膏:水 30ml 與 40ml 的烘乾完成的狀態

各組烘乾的粉筆灰:石膏:水

四:定量蛋殼粉與石膏下,加入適當量的水

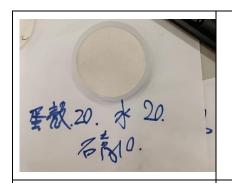
表七:各組比例與狀態

蛋殼粉:石膏:水	加入矽膠皿時的狀態	烘乾後的狀態	曬乾後的狀態
20:10:10	過於黏稠,不採納		
20:10:15	可成為流體,稍微稀	表面多粉狀蛋殼,	硬度極佳,但正面
		硬度極佳,背面外	少許氣泡,背面外
		觀、硬度極佳,在	觀、硬度極佳,但
		實心與空心之間	較為空心
20:10:20	可成為流體,稀,有	<u>與</u> 20:10:15性	硬度極佳,但正面
	氣泡	質相似	多氣泡,背面外
			觀、硬度極佳
20:10:25	可成為流體,極稀	表面多粉狀蛋殼,	有裂痕,表面許多
		硬度極佳,背面外	粉狀蛋殼,很軟
		觀、硬度極佳,但	
		較為空心	
20:10:30	可成為流體,極稀	與 20:10:25 相	有裂痕,很軟
		似	

20:10:20 加入矽膠皿時 的狀態

20:10:25 曬乾後的狀態

蛋殼粉:石膏:水 烘乾後的狀態


20:10:20 烘乾後的狀態

20:10:30 曬乾後的狀態

蛋殼粉:石膏:水 烘乾後脫模後的狀態

20:10:20 曬乾後背面的 狀態

20:10:20 曬乾後正面的 狀態

20:10:20 與 20:10:15 曬乾後的狀態

1.烘乾皆無裂痕,蛋殼粉缺點:不溶於水,易沉積於底部

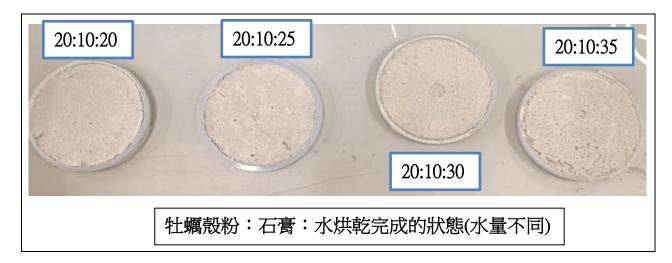
2.以硬度為主, 烘乾 20:10:15 第二, 曬乾 20:10:20 最佳

3.蛋殼粉硬度較粉筆灰佳

4. 20:10:30 曬乾後產生裂痕如右圖

五:定量牡蠣殼粉與石膏下,加入適量的水

表八:各組比例與狀態


牡蠣殼粉:石膏:水	加入矽膠皿時的狀態	烘乾完成的狀態	曬乾完成的狀態
20:10:15	過於黏稠,不採納		
20:10:20	可成為流體	質地柔軟,結構鬆	極易碎,不採納
		散,不採納	
20:10:25	可成為流體,些許稀	質地柔軟,極容易	極易碎,不採納
		產生裂痕	
20:10:30	可成為流體,極稀	質地柔軟,容易產	極易碎,不採納
		生裂痕	
20:10:35	可成為流體,極稀	與 20:10:30 特性	極易碎,不採納
		相同	

20:10:20 20:10:25 20:10:30

20:10:35

- 1.烘乾皆不採納,因質地過度柔軟
- 2.曬乾牡蠣殼粉皆易碎,因此不採納
- 3.牡蠣殼粉成形後會在表面產生一層薄膜,質地柔軟,無法脫模

六:定量碳粉與石膏下,加入適當量的水

表九:各組比例與狀態

碳粉:石膏:水	加入矽膠皿時的狀態	烘乾完成的狀態	曬乾完成的狀態
20:10:15	過於黏稠,不採納		
20:10:20	些許黏稠,少許氣泡	易碎	易碎,堅固程度較烘
			乾好
20:10:25	有點稀,些許氣泡	易碎,表面有顆	易碎,表面較完整
		粒	
20:10:30	極稀,些許氣泡	軟,表面有顆粒	軟,輕壓即碎裂
20:10:35	極稀,些許氣泡	極軟,表面多顆	表面有顆粒,極軟
		粒	

20:10:20 <mark>曬乾</mark>完成的 狀態

20:10:25(**曬乾**) 加 入矽膠皿時的狀態

20:10:30(**曬乾**)加 入矽膠皿時的狀態

20:10:35(**曬乾**) 加 入矽膠皿時的狀態

20:10:20(<mark>烘乾</mark>)加入 矽膠皿時的狀態

20:10:25(**烘乾**)加 入矽膠皿時的狀態

20:10:30(烘乾)加入矽膠

20:10:35(烘乾)加入 矽膠

1.碳粉:以硬度為優先,20:10:20(曬乾)為最佳,雖吸水時間與飽和吸水量不佳,但過於脆弱者即無法作為杯墊

2.碳粉:以吸水能力為優先,20:10:25(烘乾)最佳,20:10:20(烘乾)為其次,因為飽和吸水量較吸水時間重要,且兩組的飽和吸水量與吸水時間皆相近、吸水率差異極小,雖硬度不佳,但過於脆弱者即無法作為杯墊 20:10:30 與 20:10:35 烘乾和曬乾皆不採納

3. 碳粉:石膏:水以 20:10:20(烘乾)為最佳,吸水能力強,也試探粉中硬度最高者,不過還是有些脆弱

【研究二、探討不同組合所影響的吸水能力與耐壓度】

(一)吸水時間

表一:各組吸水時間

編號	材料	比例	花費時間
1	蛋殼粉:石膏:水	20:10:20(曬乾)	25s
2	蛋殼粉:石膏:水	20:10:15(烘乾)	8s
3	蛋殼粉:石膏:水	20:10:20(烘乾)	10s
4	蛋殼粉:石膏:水	20:10:25(烘乾)	19s
5	蛋殼粉:石膏:水	20:10:30(烘乾)	33s
6	石膏:水(培養皿)	30:20 (烘乾)	3s
7	石膏:水(培養皿)	30:30 (烘乾)	1s
8	石膏:水(矽膠皿)	30:20 (烘乾)	6s
9	石膏:水(矽膠皿)	30:30 (烘乾)	3s
10	粉筆灰:石膏:水	20:10:30 (烘乾)	46s
11	碳粉:石膏:水	20:10:20(烘乾)	2s

12	碳粉:石膏:水	20:10:25(烘乾)	4s
13	碳粉:石膏:水	20:10:30(烘乾) (硬度不採納)	7s
14	碳粉:石膏:水	20:10:35(烘乾) (硬度不採納)	8s
15	碳粉:石膏:水	20:10:20(曬乾)	10s
16	碳粉:石膏:水	20:10:25(曬乾)	3s
17	碳粉:石膏:水	20:10:30(曬乾) (硬度不採納)	5s
18	碳粉:石膏:水	20:10:35(曬乾)(硬度不採納)	6s
19	石膏:蛋殼粉:水:咖啡渣	10;20:20:2g(曬乾) (硬度不採納)	8s
20	石膏:蛋殼粉:水:碳粉	10;20:20:2g(曬乾) (硬度不採納)	5s
21	石膏:蛋殼粉:水:咖啡渣:	10:20:20:1:1g(曬乾) (硬度不採納)	6s
	碳粉		
22	石膏:蛋殼粉:水:碳粉	10:20:20:0.5g(曬乾) (硬度不採納)	4s
23	石膏:蛋殼粉:水:碳粉	10:20:20:0.3g(曬乾) (硬度不採納)	8s

- 1.碳粉與粉筆灰杯墊加水後表面容易掉色,當成杯墊容易染到桌面
- 2.在吸水時間方面,碳粉的性能是能夠媲美甚至超越石膏的,其中又以 20:10:20(**烘乾**)為 最佳
- **3.**蛋殼粉和粉筆灰在吸水時間方面,相較於其他者需要要更長的時簪,容易使水分積在杯墊上

(二)飽和吸水量

表二:各組飽和吸水量

編號	材料	比例	飽和吸水量
1	蛋殼粉:石膏:水	20:10:20(曬乾)	7.6ml
2	蛋殼粉:石膏:水	20:10:15(烘乾)	9.8ml
3	蛋殼粉:石膏:水	20:10:20(烘乾)	9.8ml
4	蛋殼粉:石膏:水	20:10:25(烘乾)	8.2ml
5	蛋殼粉:石膏:水	20:10:30(烘乾)	5.6ml
6	石膏:水(培養皿)	30:20 (烘乾)	11.8ml
7	石膏:水(培養皿)	30:30 (烘乾)	16.6ml
8	石膏:水(矽膠皿)	30:20 (烘乾)	10.2ml
9	石膏:水(矽膠皿)	30:30 (烘乾)	13.8ml
10	粉筆灰:石膏:水	20:10:30 (烘乾)	8.6ml
11	碳粉:石膏:水	20:10:20(烘乾)	14.9ml
12	碳粉:石膏:水	20:10:25(烘乾)	15.9ml
13	碳粉:石膏:水	20:10:30(烘乾)(硬度不採納)	13.2ml
14	碳粉:石膏:水	20:10:35(烘乾)(硬度不採納)	11.3ml
15	碳粉:石膏:水	20:10:20(曬乾)	13.6ml
16	碳粉:石膏:水	20:10:25(曬乾)	14.4ml
17	碳粉:石膏:水	20:10:30(曬乾)(硬度不採納)	14.6ml
18	碳粉:石膏:水	20:10:35(曬乾)(硬度不採納)	9.7ml
19	石膏:蛋殼粉:水:咖啡渣	10;20:20:2g(曬乾) (硬度不採納)	16.0ml
20	石膏:蛋殼粉:水:碳粉	10;20:20:2g(曬乾) (硬度不採納)	14.3ml
21	石膏:蛋殼粉:水:咖啡渣:碳粉	10:20:20:1:1g(曬乾) (硬度不採納)	12.5ml
22	石膏:蛋殼粉:水:碳粉	10:20:20:0.5g(曬乾) (硬度不採納)	12.9ml
23	石膏:蛋殼粉:水:碳粉	10:20:20:0.3g(曬乾) (硬度不採納)	11.0ml


- 1. 碳粉飽和吸水量普遍較佳,又以20:10:25(烘乾)為最佳
- 2. 蛋殼粉和粉筆灰的飽和吸水量也較差,須經常烘乾或曬乾,否則吸水能力差,容易腐壞、 發霉

(三)吸水率

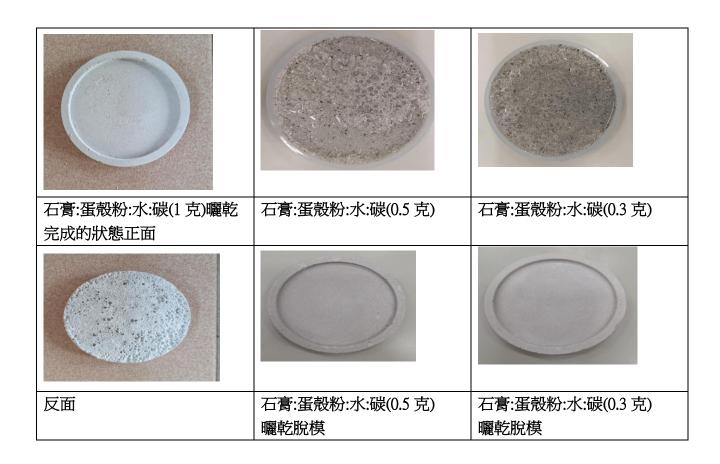
表三:各組吸水率

編號	材料	比例	原先重 量 g	加水後 重量 g	吸水率 (%)
1	蛋殼粉:石膏:水	20:10:20(曬乾)	27.8	35.4	1.27
2	蛋殼粉:石膏:水	20:10:15(烘乾)	30.0	39.8	1.33
3	蛋殼粉:石膏:水	20:10:20(烘乾)	31.9	41.7	1.31
4	蛋殼粉:石膏:水	20:10:25(烘乾)	30.0	38.2	1.27
5	蛋殼粉:石膏:水	20:10:30(烘乾)	29.8	35.4	1.19
6	石膏:水(培養皿)	30:20 (烘乾)	32.7	44.5	1.36
7	石膏:水(培養皿)	30:30 (烘乾)	31.3	47.9	1.53
8	石膏:水(矽膠皿)	30:20 (烘乾)	32.6	42.8	1.31
9	石膏:水(矽膠皿)	30:30 (烘乾)	33.7	47.5	1.41
10	粉筆灰:石膏:水	20:10:30 (烘乾)	26.1	34.7	1.33
11	碳粉:石膏:水	20:10:20(烘乾)	31.2	46.1	1.48
12	碳粉:石膏:水	20:10:25(烘乾)	36.0	51.9	1.44

編號	材料	比例	原先重 量 g	加水後 重量 g	吸水率 (%)
13	碳粉:石膏:水	20:10:30(烘乾) (硬度不 採納)	36.8	50.0	1.36
14	碳粉:石膏:水	20:10:35(烘乾)(硬度不 採納)	38.6	49.9	1.29
15	碳粉:石膏:水	20:10:20(曬乾)	28.4	42.0	1.48
16	碳粉:石膏:水	20:10:25(曬乾)	31.6	46.0	1.46
17	碳粉:石膏:水	20:10:30(曬乾)(硬度不 採納)	32.0	46.6	1.46
18	碳粉:石膏:水	20:10:35(曬乾)(硬度不 採納)	29.6	39.3	1.33
19	石膏:蛋殼粉:水:咖啡渣	10;20:20:2g(曬乾) (硬度不 採納)	29.5	44.5	1.51
20	石膏:蛋殼粉:水:碳 粉	10;20:20:2g(曬乾) (硬度不 採納)	29.6	43.9	1.48
21	石膏:蛋殼粉:水:咖啡渣:碳粉	10:20:20:1:1g(曬乾) (硬度 不採納)	32.1	44.6	1.39
22	石膏:蛋殼粉:水:碳 粉	10:20:20:0.5(曬乾) (硬度 不採納)	31.0	43.9	1.44
23	石膏:蛋殼粉:水:碳 粉	10:20:20:0.3(曬乾) (硬度 不採納)	29.5	40.5	1.37

- 1. 碳粉在吸水能力上較佳,僅次於石膏,20:10:20(**烘乾**)和20:10:20(**曬乾**)最佳
- 2. 蛋殼粉和粉筆灰的吸水能力欠佳,容易在使用時吸收不完全或花費更多時間

【研究三、探討固定量的石膏加入混合材料的最佳比例】


表一:

成分	加入培養皿時的狀態	曬乾完成的狀態
石膏:蛋殼粉:水(曬乾)	可成為流體,稀,有氣泡	硬度極佳,但正面多氣 泡,背面外觀、硬度極佳
石膏:蛋殼粉:水:咖啡渣	可成為流體,稀,少氣泡	軟,易碎,有裂痕, 不採納
石膏:蛋殼粉:水:碳	可成為流體,稀,極少氣泡	易碎,有裂痕,不採納
石膏:蛋殼粉:水:咖啡渣: 碳	可成為流體,稀,極少氣泡	軟,易碎,有裂痕, 不採納

成分	加入培養皿時的狀態	曬乾完成的狀態
石膏:蛋殼粉:水(曬乾)	稀,有氣泡	硬度極佳,但正面多氣 泡,背面外觀、硬度極佳
石膏:蛋殼粉:水:碳(1 克)	稀,有氣泡	較易碎,無裂痕
石膏:蛋殼粉:水:碳(0.5 克)	稀,有氣泡	較碳 0.3 克組易碎,無裂 痕
石膏:蛋殼粉:水:碳(0.3 克)	稀,少氣泡	稍微易碎,無裂痕

結果與討論:

- 1.加入碳粉即易碎,雖無裂痕,但不可作為杯墊使用
- 2.加入咖啡渣後使杯墊過於柔軟且易碎,不可作為杯墊做成之材料
- 3.蛋殼粉為凝固後最堅固者,因此作為主要材料,但因加入其他材料後,使之便的脆弱易碎, 因此皆不採納

陸、討論

一、探討固定量的石膏與單一材料加其他的因素的最佳比例

(一) 不同水量對杯墊的影響

加水量的不同,會影響杯墊重量、堅固程度和吸水能力,加水量越多,吸水率越少;部分加水量越多,重量越少,大部分重量呈不規則變化。

(二) 曬乾與烘乾所產生的差異

曬乾受天氣影響較大,如濕度或溫度的不同,做出的杯墊吸水性及堅固程度皆有所不同,此外,曬乾也較烘乾容易產生裂痕;而烘乾時間較短、有穩定的凝固及蒸發空間,不僅較不容 易產生裂痕,也能夠大幅減短時間。

(三) 用培養皿與矽膠皿所產生的差異

培養皿為固定形狀,延展性差,在杯墊成形的時候,容易因為空見受限導致杯墊更容易碎裂;矽膠皿有著更好的延展性,能夠讓杯墊有膨脹空間,在成形後,也更好脫模。

(四) 石膏與碳粉與水的最佳比例

碳粉主要的功用是增加吸水能力,但在硬度方面則顯得脆弱不堪,吸水率及堅固程度皆以曬乾為最佳,比例為石膏:碳粉:水 10:20:20

(五) 石膏與蛋殼粉與水的最佳比例

蛋殼粉加石膏會產生較多氣泡,讓內部產生孔隙,使整體較輕;蛋殼粉也是全部實驗品中最為堅固的,其中又以石膏:蛋殼粉:水10:20:20(曬乾)為最佳

(六) 石膏與牡蠣殼粉與水的最佳比例

加入牡蠣殼粉混和後的杯墊非常易碎且柔軟,表面還會有一層薄膜,不僅影響美觀,整體的硬度及吸水率也差,無法形成合格的杯墊,因此不予採納

(七) 石膏與粉筆灰與水的最佳比例

粉比灰雖然能夠成形,但易碎且柔軟,容易讓灰沾手,且成形後會使表面彎曲,不太適合作為杯墊的材料,最佳比例為石膏:粉筆灰:水 10:20:30

(八) 粉筆灰與水的最佳比例

單純的粉筆灰雖然成分中含有石膏,但還是有些雜質,會導致整體杯墊非常脆弱、易碎,甚 至無法成形,因此不列入考量

(九) 石膏與水的最佳比例

石膏加水皆以 30g 石膏粉為基準,加入不同量的水,找出相對更好的比例,我們認為加 10g 水者過與濃稠,且結果相較於其他兩者更難以塑形;而 30g 水的因加水量多,所以需花更久的時間凝固,但吸水量、吸水率最佳,且硬度與其他相當,最後我們決定使用石膏:水 30:30(烘乾)(培養皿)作為對照組

二、探討固定量的石膏加單一材料加混合材料與其他因素的最佳比例

(一) 加入碳粉的最佳比例

碳粉功用為增加吸水能力,加入過多(0.3g 即過多)會影響杯墊的軟硬程度,使之變得易碎,因此也不納入考量

(二) 加入咖啡渣的最佳比例

咖啡渣主要作用為防止發霉腐壞及延長使用壽命,但會嚴重影響杯墊的堅固程度,且大多與 杯墊分離,呈粉狀於杯墊上方,使杯墊變得過於柔軟,因此不列入考量。

(三) 加入碳粉與咖啡渣的最佳比例

咖啡渣雖可防腐,但會嚴重影響杯墊的堅固程度,使之變得過於柔軟,因此不列入考量,碳粉雖可增加吸水性能,但也會少量影響堅固程度,變得易碎,即使只有加入 0.3g,因此也不列入考量

三、探討不同組合影響吸水率、吸水時間、飽和吸水量與耐壓度的多寡

(一) 加水量不同是否影響杯墊的重量而影響吸水率

以實驗結果來看,加水量愈多,重量愈少,吸水率也愈低。

(二) 不同材料對吸水率、吸水時間、飽和吸水量的影響

雖然咖啡渣與蛋殼粉混合的吸水率佳,但過於柔軟,難以維持原樣;而整體最佳者為 碳粉,能夠有穩定且較強的吸水性能,也擁有足夠的硬度,缺點為過於易碎。

(三) 不同組合何者的耐壓度最高

因形狀不符,導致杯墊材料能承受遠超過原本材料所能承受之重量,最後導致測驗結果不合理。

柒、結論與展望

一、結論:

- 1. 吸水效果:石膏>碳粉>蛋殼粉=粉筆灰
- 2. 硬度:石膏>蛋殼粉>粉筆灰>碳粉>牡蠣殼粉
- 3. 蛋殼粉效果最好,碳粉、粉筆灰及牡蠣殼粉皆會大幅降低石膏的堅固程度
- 4. 烘乾大多較曬乾效果好,較不易產生裂痕
- 5. 培養皿幾乎較培養皿好,較不易產生裂痕
- 6. 蛋殼粉加入石膏會產牛較多氣泡,因內部產牛孔隙,使整體杯墊較輕
- 7. 碳粉能夠增加吸水性能,咖啡渣可以延緩腐壞,但皆會使杯墊變得柔軟易碎,咖啡渣 更為脆弱,皆不採納
- 8. 粉筆灰在培養皿中易碎裂,在矽膠皿中會彎曲,難以作為杯墊

二、未來展望:

- 1.在待成形的杯墊上方加蓋玻璃片,能使表面變得更光滑且平整,不只美觀,也能在測試時更加精準
- 2. 可以以蛋殼粉組產生較多氣泡的特性,嘗試製作更輕的杯墊
- 3. 因為耐壓測試結果不理想,將來也會嘗試製作不同形狀再進行測試,例如方形,能夠測試出更正確的硬度

- 4.加入更多不同種類的材料,或許會有更多不同的作用,例如紙漿、棉絮等環保材料,嘗試增加實用性
- 5.粉筆灰雖然會彎曲且易產生裂痕,脫落的灰更是一大問題,不過在硬度方面有個比例不僅能夠成形,有擁有一定的硬度,或許能夠嘗試讓粉筆灰在烘乾過程中不彎曲
- 6.混合材料所製成的杯墊雖然接過度易碎,無法作為杯墊使用,但都各有所長,或許 還有改良空間,以增加強度

捌、参考資料

1.光邦石膏股份有限公司

http://www.kpisi.com/21322277003070733167290873070733167.html

2. 中華民國第 61 屆中小學科學展覽會國中組 吸奇杯墊

https://twsf.ntsec.gov.tw/activity/race-1/61/pdf/NPHSF2021-032905.pdf?0.476822063094005

3. 維基百科 石膏:

 $\underline{https://zh.wikipedia.org/zh-tw/\%E7\%9F\%B3\%E8\%86\%8F}$

4.中華民國第 56 屆中小學科學展覽會高級中等學校組工程學科(二)科 「灰」

「灰」衣袖,帶來一片商機作品說明書:

https://twsf.ntsec.gov.tw/activity/race-1/56/pdf/052409.pdf

5.國語日報粉筆灰變再生紙 小學生大發明:

https://www.mdnkids.com/search_content.asp?Serial_NO=%2079315

- 6. 中華民國第 58 屆中小學科學展覽會國小組化學科 尋找玉米黏土的真面目 https://twsf.ntsec.gov.tw/activity/race-1/58/pdf/NPHSF2018-080202.pdf
- 7. 中華民國第 61 屆中小學科學展覽會國中組生活與應用科學(二)科「殼」已再生一垃圾變黃金

 $\frac{https://twsf.ntsec.gov.tw/activity/race-1/61/pdf/NPHSF2021-032924.pdf?0.5456531664822251$